Skip to main content
Log in

Analytical Stability Bound for a Class of Delayed Fractional-Order Dynamic Systems

Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Delayed Linear Time-Invariant (LTI) fractional-order dynamic systems areconsidered. The analytical stability bound is obtained by using Lambertfunction. Two examples are presented to illustrate the obtainedanalytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gorecki, H., Fuksa, S., Grabowski, P., and Korytowski, A., Analysis and Synthesis of Time Delay Systems, Wiley/PWN-Polish Scientific Publishers, New York/Warsaw, 1989.

    Google Scholar 

  2. Marshall, J. E., Gorecki, H., Walton, K., and Korytowski, A., Time Delay Systems, Stability and Performance Criteria with Applications, Ellis Horwood, West Sussex, England, 1992.

    Google Scholar 

  3. Bellman, R. E. and Cooke, K. L., Differential-Difference Equations, Academic Press, New York, 1963.

    Google Scholar 

  4. Smith, O. J. M., 'A controller to overcome dead time', Instrumentation, Systems and Automation (ISA) Society Journal 6, 1959, 28–33.

    Google Scholar 

  5. Marshall, J. E., Control Time-Delay Systems, Control Engineering Series, Vol. 10, IEE, London, 1979.

    Google Scholar 

  6. Abdelrahman, M., Moore, K. L., and Naidu, D. S., 'Generalized Smith predictor for robust control of nuclear reactors with time delays', in Proceedings of the American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface Technologies, Pittsburgh, PA, 1996, pp. 1–6.

  7. Moore, K. L., Iterative Learning Control for Deterministic Systems, Advances in Industrial Control, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  8. Chen, Y. and Wen, C., Iterative Learning Control: Convergence, Robustness and Applications, Lecture Notes Series on Control and Information Science, Vol. 248, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  9. Lambert, J. H., 'Observationes varies inmathesin puram', Acta Helvetica, Physico-Mathematico-Anatomico-Botanico-Medica 3, 1758, 128–168.

    Google Scholar 

  10. Euler, L., 'Deformulis exponentialibus replicatis', Leonhardi Euleri Opera Omnia, Series 1, Opera Mathematica 15(1927), 1777, 268–297.

    Google Scholar 

  11. Euler, L., 'De serie Lambertina plurimistique eius insignibus proprietatibus', Leonhardi Euleri Opera Omnia, Series 1, Opera Mathematica 6(1921), 1779, 350–369.

    Google Scholar 

  12. Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., and Knuth, D. E., 'On the Lambert W function', Advances in Computational Mathematics 5, 1996, 329–359.

    Google Scholar 

  13. Corless, R. M., Gonnet, G. H., Hare, D. E. G., and Jeffrey, D. J., 'Lambert's W function in Maple', Maple Technical Newsletter 9, 1993, 12–22.

    Google Scholar 

  14. Corless, R. M., Jeffrey, D. J., and Knuth, D. E., 'A sequence of series for the Lambert W function', in Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC'97), Maui, U.S.A., W. W. Kuechlin (ed.), 1997, pp. 197–204.

  15. Valluri, S. R., Jeffrey, D. J., and Corless, R. M., 'Some applications of the Lambert's W function to physics', Canadian Journal of Physics 78, 2000, 823–831.

    Google Scholar 

  16. Wright, E. M., 'The linear difference-differential equation with constant coefficients', Proceedings of the Royal Society of Edinburgh 62A, 1949, 387–393.

    Google Scholar 

  17. Jeffrey, D. J., Hare, D. E. G., and Corless, R. M., 'Unwinding the branches of the Lambert W function', Mathematics Scientist 21, 1996, 1–7.

    Google Scholar 

  18. Asl, F. M. and Ulsoy, A. G., 'Analytical solution of a system of homogeneous delay differential equations via the Lambert function', in Proceedings of the American Control Conference, Chicago, IL, June, 2000, pp. 2496–2500.

  19. Chen, Y. and Moore, K. L., 'Analytical stability bound for delayed second order systems with repeating poles using Lambert function w', Automatica 38(5), 2002, 891–895.

    Google Scholar 

  20. Kalmár-Nagy, T., Stépán, G., and Moon, F. C., 'Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations', Nonlinear Dynamics 26, 2001, 121–142.

    Google Scholar 

  21. Torvik, P. J. and Bagley, R. L., 'On the appearance of the fractional derivative in the behavior of real materials', Transactions of the American Society of Mechanical Engineers 51, 1984, 294–298.

    Google Scholar 

  22. Podlubny, I., Dorčák, L., and Misanek, J., 'Application of fractional-order derivatives to calculation of heat load intensity change in blast furnace walls', Transactions of Technical University of Kosice 5(5), 1995, 137–144.

    Google Scholar 

  23. Manabe, S., 'The non-integer integral and its application to control systems', Journal of Institute of Electrical Engineers of Japan 80(860), 1960, 589–597.

    Google Scholar 

  24. Axtell, M. and Bise, E. M., 'Fractional calculus applications in control systems', in Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, New York, IEEE, New York, 1990, pp. 563–566.

    Google Scholar 

  25. Oustaloup, A., La Dérivation non Entière, Hermès, Paris, 1995.

    Google Scholar 

  26. Dorčák, L., 'Numerical models for simulation the fractional-order control systems', in UEF-04–94, The Academy of Science, Institute of Experimental Physics, Kosice, Slovak Republic, 1994, pp. 1–12.

    Google Scholar 

  27. Matignon, D., 'Stability result on fractional differential equations with applications to control processing', in IMACS-SMC Proceedings, Lille, France, 1996, pp. 963–968.

    Google Scholar 

  28. Oldham, K. B. and Spanier, J., The Fractional Calculus, Academic Press, New York, 1974.

    Google Scholar 

  29. Podlubny, I., 'The Laplace transform method for linear differential equations of the fractional order', in Proceedings of the 9th International BERG Conference, Kosice, Slovak Republic, 1997, p. 119 [in Slovak].

  30. Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, CA, 1999. 200 Y. Q. Chen and K. L. Moore

    Google Scholar 

  31. Woon, S. C., 'Analytic continuation of operators-operators acting complex s-time. Applications: From number theory and group theory to quantum field and string theories', Reviews in Mathematical Physics 11(4), 1999, 463–501.

    Google Scholar 

  32. Zavada, P., 'Operator of fractional derivative in the complex plane', Communications in Mathematical Physics 192(2), 1998, 261–285.

    Google Scholar 

  33. Lurie, B. J., 'Three-parameter tunable tilt-integral-derivative (TID) controller', US Patent US5371670, 1994.

  34. Petráš, I., Dorčák, L., and Kostial, I., 'Control quality enhancement by fractional order controllers', Acta Montanistica Slovaca 2, 1998, 143–148.

    Google Scholar 

  35. Podlubny, I., 'Fractional-order systems and fractional-order controllers', in UEF-03–94, The Academy of Sciences Institute of Experimental Physics, Kosice, Slovak Republic, 1994.

    Google Scholar 

  36. Raynaud, H.-F. and Zergainoh, A., 'State-space representation for fractional order controllers', Automatica 36, 2000, 1017–1021.

    Google Scholar 

  37. Oustaloup, A., Melchoir, P., Lanusse, P., Cois, C., and Dancla, F., 'The CRONE toolbox for Matlab', in Proceedings of the 11th IEEE International Symposium on Computer Aided Control System Design-CACSD, Anchorage, AK, U.S.A., IEEE, New York, 2000, pp. 190–195.

    Google Scholar 

  38. Chen, Y. and Moore, K. L., 'Discretization schemes for fractional order differentiators and integrators', IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(3), 2002, 363–367.

    Google Scholar 

  39. Chen, Y. and Moore, K. L., 'Analytical stability bound for a class of delayed fractional-order dynamic systems', in Proceedings of the IEEE Conference on Decision and Control (CDC'01), Orlando, FL, IEEE, New York, 2001, pp. 1421–1426.

    Google Scholar 

  40. Samko, S. G., Kilbas, A. A., and Marichev, O. I., Fractional Integrals and Derivatives and Some of Their Applications, Nauka i technika, Minsk, 1987.

    Google Scholar 

  41. Miller, K. S. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

    Google Scholar 

  42. Petráš, I. and Dorčák, L., 'The frequency method for stability investigation of fractional control systems', Stability and Control: Theory and Applications (SACTA) Journal 2(1–2), 1999, 75–85.

    Google Scholar 

  43. Petráš, I., Dorčák, L., O'Leary, P., Vinagre, B. M., and Podlubny, I., 'The modelling and analysis of fractional-order control systems in frequency domain', in Proceedings of the International Carpathian Control Conference (ICCC'2000), High Tatras, Slovak Republic, May 23–26, 2000, pp. 261–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Moore, K.L. Analytical Stability Bound for a Class of Delayed Fractional-Order Dynamic Systems. Nonlinear Dynamics 29, 191–200 (2002). https://doi.org/10.1023/A:1016591006562

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016591006562

Navigation