Skip to main content
Log in

Hybrid Genetic Algorithm for DNA Sequencing with Errors

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

In the paper, a new hybrid genetic algorithm solving the DNA sequencing problem with negative and positive errors is presented. The algorithm has as its input a set of oligonucleotides coming from a hybridization experiment. The aim is to reconstruct an original DNA sequence of a known length on the basis of this set. No additional information about the oligonucleotides nor about the errors is assumed. Despite that, the algorithm returns for computationally hard instances surprisingly good results, of a very high similarity to original sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bains, W. and G.C. Smith. (1988). “A Novel Method for Nucleic Acid Sequence Determination.” Journal of Theoretical Biology 135, 303–307.

    Google Scholar 

  • Błażewicz, J., J. Kaczmarek, M. Kasprzak, W.T. Markiewicz, and J. Węglarz. (1997). “Sequential and Parallel Algorithms for DNA Sequencing.” Computer Applications in the Biosciences 13, 151–158.

    Google Scholar 

  • Błażewicz, J., P. Formanowicz, M. Kasprzak, W.T. Markiewicz, and J. Węglarz. (1999a). “DNA Sequencing with Positive and Negative Errors.” Journal of Computational Biology 6, 113–123.

    Google Scholar 

  • Błażewicz, J., P. Formanowicz, F. Glover, M. Kasprzak, and J. Węglarz. (1999b). “An Improved Tabu Search Algorithm for DNA Sequencing with Errors.” In Proceedings of the III Metaheuristics International Conference MIC'99, pp. 69–75.

  • Błażewicz, J., P. Formanowicz, M. Kasprzak, W.T. Markiewicz, and J. Węglarz. (2000). “Tabu Search for DNA Sequencing with False Negatives and False Positives.” European Journal of Operational Research 125, 257–265.

    Google Scholar 

  • Błażewicz, J. and M. Kasprzak. (2002). “Complexity of DNA Sequencing by Hybridization.” Theoretical Computer Science, to appear.

  • Caviani Pease, A., D. Solas, E.J. Sullivan, M.T. Cronin, C.P. Holmes, and S.P.A. Fodor. (1994). “Light-Generated Oligonucleotide Arrays for Rapid DNA Sequence Analysis.” In Proceedings of the National Academy of Sciences of the USA 91, pp. 5022–5026.

    Google Scholar 

  • Drmanac, R., I. Labat, I. Brukner, and R. Crkvenjakov. (1989). “Sequencing of Megabase Plus DNA by Hybridization: Theory of the Method.” Genomics 4, 114–128.

    Google Scholar 

  • Drmanac, R., I. Labat, and R. Crkvenjakov. (1991). “An Algorithm for the DNA Sequence Generation from k-tupleWord Contents of the Minimal Number of Random Fragments.” Journal of Biomolecular Structure and Dynamics 8, 1085–1102.

    Google Scholar 

  • Fodor, S.P.A., J.L. Read, M.C. Pirrung, L. Stryer, A.T. Lu, and D. Solas. (1991). “Light-Directed, Spatially Addressable Parallel Chemical Synthesis.” Science 251, 767–773.

    Google Scholar 

  • Glover, F. (1977). “Heuristics for Integer Programming Using Surrogate Constraints.” Decision Sciences 8, 156–166.

    Google Scholar 

  • Glover, F. and M. Laguna. (1977). Tabu Search. Norwell: Kluwer Academic Publishers.

    Google Scholar 

  • Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Reading: Addison-Wesley.

    Google Scholar 

  • Grefenstette, J.J., R. Gopal, B.J. Rosmaita, and D. Van Gucht. (1985). “Genetic Algorithms for the Traveling Salesman Problem.” In Proceedings of International Conference on Genetic Algorithms and Their Applications, pp. 160–168.

  • Hagstrom, J.N., R. Hagstrom, R. Overbeek, M. Price, and L. Schrage. (1994). “Maximum Likelihood Genetic Sequence Reconstruction from Oligo Content.” Networks 24, 297–302.

    Google Scholar 

  • Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Lipshutz, R.J. (1993). “Likelihood DNA Sequencing by Hybridization.” Journal of Biomolecular Structure and Dynamics 11, 637–653.

    Google Scholar 

  • Lysov, Yu. P., V.L. Florentiev, A.A. Khorlin, K.R. Khrapko, V.V. Shik, and A.D. Mirzabekov. (1988). “Determination of the Nucleotide Sequence of DNA Using Hybridization with Oligonucleotides. A New Method.” Doklady Akademii Nauk SSSR 303, 1508–1511.

    Google Scholar 

  • Markiewicz, W.T., K. Andrych-Rożek, M. Markiewicz, A. Żebrowska, and A. Astriab. (1994). “Synthesis of Oligonucleotides Permanently Linked with Solid Supports for Use as Synthetic Oligonucleotide Combinatorial Libraries. Innovations in Solid Phase Synthesis.” In R. Epton (ed.), Biological and Biomedical Applications. Birmingham: Mayflower Worldwide, pp. 339–346.

    Google Scholar 

  • Pevzner, P.A. (1989). “l-tuple DNA Sequencing: Computer Analysis.” Journal of Biomolecular Structure and Dynamics 7, 63–73.

    Google Scholar 

  • Southern, E.M. (1988). United Kingdom Patent Application GB8810400.

  • Waterman, M.S. (1995). Introduction to Computational Biology. Maps, Sequences and Genomes. London: Chapman &; Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Błażewicz, J., Kasprzak, M. & Kuroczycki, W. Hybrid Genetic Algorithm for DNA Sequencing with Errors. Journal of Heuristics 8, 495–502 (2002). https://doi.org/10.1023/A:1016589707123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016589707123

Navigation