Skip to main content
Log in

Peroxisome proliferator-activated receptors (PPARs) and peroxisomes in rat cortical and cerebellar astrocytes

  • Published:
Journal of Neurocytology

Abstract

Astrocytes are the most versatile cells of the neural tissue. Numerous astrocytic functions—such as protection from oxidative damage, catabolism of neuroactive D-amino acids acting as neuromodulators, synthesis and catabolism of some lipid molecules, and, possibly, gluconeogenesis—reside in peroxisomes. The expression of several peroxisomal enzymes, particularly those of the acyl-CoA β-oxidation pathway, is regulated by a class of ligand-activated transcription factors, known as peroxisome proliferator-activated receptors (PPARs), acting on their target genes as heterodimers with the retinoid X receptors (RXRs). In this work, primary and secondary cultures of astrocytes from the cerebral cortices and cerebella of neonatal rats (2 and 7 days of postnatal age) were utilized to investigate the expression of peroxisomal enzymes, PPAR and RXR isotypes (α, β and γ), by both biochemical and immunological methods. The results obtained demonstrate that astrocytes in vitro express peroxisomal enzymes, PPARs, and RXRs and that differences dependent on brain area, animal age, and culture time are reminiscent of the in vivo situation. Therefore, primary cultures of astrocytes and, particularly, high purified subcultures may constitute a useful model for further studies aimed to gain further insights into the roles of peroxisomes and PPARs related to lipid and glucose metabolism in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboushadi, N., Shackelford, J. E., Jessani, N., Gentile, A. & Krisans, S. K. (2000) Characterization of peroxisomal 3-hydroxy-3-methylglutaryl coenzyme A reductase in UT2 cells: Sterol biosynthesis, phosphorylation, degradation, and statin inhibition. Biochemistry 39, 237–247.

    Google Scholar 

  • Adamo, A. M., Aloise, A. P. & Pasquini, J. M. (1986) A possible relationship between concentration of microperoxisomes and myelination. International Journal of Developmental Neuroscience 4, 513–517.

    Google Scholar 

  • Aloisi, F., Agresti, C. & Levi, G. (1988) Establishment, characterization and evolution of cultures enriched in type-2 astrocytes. Journal of Neuroscience Research 21, 188–198.

    Google Scholar 

  • Arnold, G. & Holtzman, E. (1978) Microperoxisomes in the central nervous system of the postnatal rat. Brain Research 155, 1–17.

    Google Scholar 

  • Arnold, G., Liscum, L. & Holtzman, E. (1979) Ultrastructural localization of D-amino acid oxidase in microperoxisomes of the rat nervous system. Journal of Histochemistry and Cytochemistry 27, 735–745.

    Google Scholar 

  • Basu-Modak, S., Braissant, O., Escher, P., Desvergne, B., Honnegger, P. & Wahli, W. (1999) Peroxisome proliferator-activated receptor β regulates acyl-CoA synthetase 2 in reaggregated rat brain cell cultures. Journal of Biological Chemistry 274, 35881–35888.

    Google Scholar 

  • Bernardo, A., Levi, G. & Minghetti, L. (2000) Role of the peroxisome proliferator-activated receptor gamma (PPAR-gamma) and its natural ligand 15-deoxy-Delta12, 14-prostaglandin J2 in the regulation of microglial functions. European Journal of Neuroscience 12, 2215–2223.

    Google Scholar 

  • Blazquez, C., Sanchez, C., Velasco, G. & Guzman, M. (1998) Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes. Journal of Neurochemistry 71, 1597–1606.

    Google Scholar 

  • Boyles, J.K., Pitas, R. E., Wilson, E., Mahley, R. W. & Taylor, J. M. (1985) Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. Journal of Clinical Investigation 76, 1501–1503.

    Google Scholar 

  • Braissant, O., Foufelle, F., Scotto, C., Dauca, M. & Whali, W. (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPARα, β, and γ in adult rat. Endocrinology 137, 354–366.

    Google Scholar 

  • Braissant, O. & Whali, W. (1998) Differential expression of peroxisome proliferator-activated receptors α, β, and ? during rat embryonic development. Endocrinology 139, 2748–2754.

    Google Scholar 

  • Carmignoto, G. (2000) Reciprocal communication systems between astrocytes and neurones. Progress in Neurobiology 62, 561–581.

    Google Scholar 

  • Carpentier, A. F., Leonard, N., Lacombe, J., Zassadowski, F., Padua, R. A., Degos, L., Daumas-Duport, C. & Chomienne, C. (1999) Retinoic acid modulates RAR alpha and RAR beta receptors in human glioma cell lines. Anticancer Research 19, 3189–3192.

    Google Scholar 

  • Chattopadhyay, N., Singh, D. P., Heese, O., Godbole, M. M., Sinohara, T., Black, P. M. & Brown, E. M. (2000) Expression of peroxisome proliferator-activated receptors (PPARs) in human astrocytic cells: PPARγ agonists as inducers of apoptosis. Journal of Neuroscience Research 61, 67–74.

    Google Scholar 

  • Cimini, A. M., Brunori, A., Candi, E., Catani, M. V. & CerÙ, M. P. (1993a) Catalase activity in neuroectodermal cell lines and tumours. Clinical Chemistry Enzymology Communications 6, 63–67.

    Google Scholar 

  • Cimini, A. M., Cristiano, L., Bernardo, A., Farioli-Vecchioli, S., Stefanini, S. & CerÙ, M. P. (2000) Presence and inducibility of peroxisomes in a human glioblastoma cell line. Biochimica et Biophysica Acta 1474, 397–409.

    Google Scholar 

  • Cimini, A. M., Moreno, S., Serafini, B. & CerÙ, M. P. (1993b) Purification of peroxisomal fraction from rat brain. Neurochemistry International 23, 249–260.

    Google Scholar 

  • Cimini, A. M., Singh, I., Farioli-Vecchioli, S., Cristiano, L. & CerÙ, M. P. (1998) Presence of heterogeneous peroxisomal populations in the rat nervous tissue. Biochimica Et Biophysica Acta 1425, 13–26.

    Google Scholar 

  • Cimini, A. M., Sulli, A., Stefanini, S., Serafini, B., Moreno, S., Rossi, L., Giorgi, M. & CerÙ, M. P. (1994) Effects of di-(2-ethylhexyl)phthalate on peroxisomes of liver, kidney and brain of lactating rats and their pups. Cellular and Molecular Biology 40, 1063–1076.

    Google Scholar 

  • Coyle, J. T. & Molliver, M. E. (1977) Major innervation of newborn rat cortex by monoaminergic neurons. Science 196, 444–447.

    Google Scholar 

  • Cristiano, L. (2001) Doctoral thesis. PPAR and RXR Receptors in Cultured Astrocytes. University of L'Aquila.

  • Cullingford, T. E., Bhakoo, K., Peuchen, S., Dolphin, C. T., Patel, R. & Clark, J. B. (1998) Distribution of mRNAs encoding the peroxisome proliferator-activated receptor α, β, and ? and the retinoid X receptor α, β, and ? in rat central nervous system. Journal of Neurochemistry 70, 1366–1375.

    Google Scholar 

  • de Urquiza, A. M., Liu, S., Sjoberg, M., Zetterstrom, R. H., Griffith, W., Sjovall, J. & Perlmann, T. (2000) Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290, 2140–2144.

    Google Scholar 

  • Dringen, R. & Hamprecht, B. (1992) Glucose, insulin and insulin-like growth factor I regulate the glycogen content of astroglia-rich primary cultures. Journal of Neurochemistry 58, 511–517.

    Google Scholar 

  • Edmond, J. (1992) Energy metabolism in developing brain cells. Cancer Journal of Physiology and Pharmacology 70, S118–S129.

    Google Scholar 

  • Escher, P. & Whali, W. (2000) Peroxisome proliferatoractivated receptors: Insight multiple cellular functions. Mutation Research 448, 121–138.

    Google Scholar 

  • Fagan, A. M. & Holtzman, D. M. (2000) Astrocyte lipoproteins, effects of apoE on neuronal function and role of apoE in amyloid-beta deposition in vivo. Microscoscopy Research and Technique 50, 297–304.

    Google Scholar 

  • Farioli-Vecchioli, S. (2001a) Doctoral thesis. Immunocytochemical Localization of Nuclear Receptors in Developing and Adult Rat Brain. University of L'Aquila.

  • Farioli-Vecchioli, S., Moreno, S. & CerÙ, M. P. (2001b) Immunocytochemical localization of acyl-CoA oxidase in the rat central nervous system. Journal of Neurocytology 30, 21–33.

    Google Scholar 

  • Forman, B. M., Chen, J. & Evans, R. M. (1997) Hypolipidemic drugs, polyunsaturated fatty acids and eicosanoids are ligands for peroxisome proliferatoractivated receptors α and δ. Proceedings of the National Academy of Sciences USA 94, 4312–4317.

    Google Scholar 

  • Fouquet, F., Zhou, J. M., Ralson, E., Murray, K., Troalen, F., Magal, E., Robain, O., Duboisdalcq, M. & Aubourg, P. (1997) Expression of the adrenoleukodystrophy protein in the human and mouse central nervous system. Neurobiology of Disease 3, 271–285.

    Google Scholar 

  • Gaunt, G. L. & de Duve, C. (1976) Subcellular distribution of D-aminoacid oxidase and catalase in rat brain. Journal of Neurochemistry 26, 749–759.

    Google Scholar 

  • Granneman, J., Skoff, R. & Yang, X. (1998) Member of the peroxisome proliferator-activated receptor family of transcription factors is differentially expressed by oligodendrocytes. Journal of Neuroscience Research 51, 563–573.

    Google Scholar 

  • Hajra, A. K. (1997) Dihydroxyacetone phosphate acyltransferase. Biochimica et Biophysica Acta 1348, 27–34.

    Google Scholar 

  • Hamprecht, B. & Dringen, R. (1995) Energy metabolism. In Neuroglia (edited by Kettenman, H. H. & Ransom, B. R.) pp. 473–487. New York: Oxford University Press.

    Google Scholar 

  • Heneka, M. T., Feinstein, D. L., Galea, E., Gleichmann, M., Wullner, U. & Klockgether, T. (1999) Peroxisome proliferatoractivated receptor gamma agonists protect cerebellar granule cells from cytochine-induced apoptotic cell death by inhibition of inducible nitric oxide synthase. Journal of Neuroimmunology 100, 156–168.

    Google Scholar 

  • Heneka, M. T., Klockgether, T. & Feinstein, D. L. (2000) Peroxisome proliferator-activated receptors-γ ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. Journal of Neuroscience 20, 6862–6867.

    Google Scholar 

  • Holtzman, E. (1982) Peroxisomes in nervous tissue. Annual of the New York Academy of Sciences 386, 523–525.

    Google Scholar 

  • Horiike, K., Tojo, H., Arai, R., Nozaki, M. & Maeda, T. (1994) D-Amino-acid oxidase is confined to the lower brain stem and cerebellum in rat brain: Regional differentiation of astrocytes. Brain Research 652, 297–303.

    Google Scholar 

  • Houdou, S., Kuruta, H., Hasegawa, M., Konomi, H., Takashima, S., Suzuki, Y. & Hashimoto, T. (1991) Developmental immunohistochemistry of catalase in the human brain. Brain Research 556, 267–270.

    Google Scholar 

  • Houdou, S., Takashima, S. & Suzuki, Y. (1993) Immunohistochemical expression of peroxisomal enzymes in developing human brain. Molecular and Chemical Neuropathology 19, 235–248.

    Google Scholar 

  • Isseman, I. & Green, S. (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–650.

    Google Scholar 

  • Kainu, T., Wikstrom, A. C., Gustafsson, J. A. & Pelto-Huikko, M. (1994) Localization of the peroxisome proliferator-activated receptor in the brain. Neuroreport 5, 2481–2485.

    Google Scholar 

  • Kersten, S., Desvergne, B. & Whali, W. (2000) Roles of PPARs in health and disease. Nature 405, 421–424.

    Google Scholar 

  • Kliewer, S. A., Lehman, J. M. & Willson, T. M. (1999) Orphan nuclear receptors: Shifting endocrinology into reverse. Science 284, 757–760.

    Google Scholar 

  • Kliewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A. & Evans, R. M. (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature (London) 358, 771–774.

    Google Scholar 

  • Kremarik-Bouillaud, P., Schohn, H. & Dauca, M. (2000) Regional distribution of PPARγ in the cerebellum of the rat. Journal of Chemical Neuroanatomy 19, 225–232.

    Google Scholar 

  • Krey, G., Braissant, O., L'Horset, F., Kalkhoven, E., Perroud, M., Parker, M. G. & Whali, W. (1997) Fatty acids, eicosanoids and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivatordependent receptor ligand assay. Molecular Endocrinology 11, 779–790.

    Google Scholar 

  • Krezel, W., Kastner, P. & Chambon, P. (1999) Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 89, 1291–1300.

    Google Scholar 

  • Laemmli, E. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Google Scholar 

  • Lageweg, W., Sykes, J. E. C., Lopes-Cardozo, M. & Wanders, R. J. A. (1991) Oxidation of very-longchain fatty acids in rat brain: Cerotic acid is ?-oxidized exclusively in rat brain peroxisomes. Biochimica et Biophysica Acta 1085, 381–384.

    Google Scholar 

  • Lazo, O., Singh, A. K. & Singh, I. (1991) Postnatal development and isolation of peroxisomes from brain. Journal of Neurochemistry 56, 1343–1353.

    Google Scholar 

  • Lee, S. J., Park, J. Y., Hou, J. & Benveniste, E. N. (1998) Transcriptional regulation of the intercellular adhesion molecule-1 gene by proinflammatory cytokines in human astrocytes. Glia 25, 21–32.

    Google Scholar 

  • Lopes-Cardozo, M., Larsson, O. M. & Schonsboe, A. (1986) Acetoacetate and glucose as lipid precursors and energy substrates in primary cultures of astrocytes and neurons from mouse cerebral cortex. Journal of Neurochemistry 46, 773–778.

    Google Scholar 

  • Lowry, O. H. Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) Protein measurement with Folin phenol reagent. Journal of Biological Chemistry 193, 265–275.

    Google Scholar 

  • Luck, H. (1963) In Methods in Enzymatic Analysis (edited by BERGMEYER, H. U.) pp. 885–894. New York: Academic Press.

    Google Scholar 

  • Mangelsdorf, D. J., Borgmeyer, U., Heyman, R. A., Zhou, J. Y., Ong, E. S., Oro, A. E., Kakizuka, A. & Evans, R. M. (1992) Characterization of three RXR genes that mediate the action of 9-cis-retinoic acid. Genes and Development 6, 329–344.

    Google Scholar 

  • Mangelsdorf, D. J. & Evans, R. M. (1995) The RXR heterodimers and orphan receptors. Cell 83, 841–850.

    Google Scholar 

  • Martinez, M. & Vazquez, E. (1998) MRI evidence that docosahexaenoic acid ethyl ester improves myelination in generalized peroxisomal disorders. Neurology 51, 26–32.

    Google Scholar 

  • Masters, C. (1997) Gluconeogenesis and the peroxisome. Molecular and Cellular Biochemistry 166, 159–168.

    Google Scholar 

  • McKenna, O., Arnold, G. & Holtzman, E. (1976) Microperoxisomes distribution in the central nervous system of the rat. Brain Research 117, 181–194.

    Google Scholar 

  • Moore, S. A., Yoder, E., Murphy, S., Dutton, G. R. & Spector, A. A. (1991) Astrocytes, not neurons, produce docosahexaenoic acid (22:6?-3) and arachidonic acid (20:4?-6). Journal of Neurochemistry 56, 518–524.

    Google Scholar 

  • Moreno, S., Mugnaini, E. & CerÙ, M. P. (1995) Immunocytochemical localization of catalase in the central nervous system of the rat. Journal of Histochemistry and Cytochemistry 43, 1253–1267.

    Google Scholar 

  • Moreno, S., Nardacci, R. & CerÙ, M. P. (1997) Regional and ultrastructural immunolocalization of copper-zinc superoxide dismutase in rat central nervous system. Journal of Histochemistry and Cytochemistry 45, 1611–1622.

    Google Scholar 

  • Moreno, S., Nardacci, R., Cimini, A. M. & CerÙ:, M. P. (1999) Immunocytochemical localization of Daminoacid oxidase in rat brain. Journal of Neurocytology 28, 169–185.

    Google Scholar 

  • Moser, H. W. (2000) Molecular genetics of peroxisomal disorders. Frontiers in Bioscience 5, D298–306.

    Google Scholar 

  • Murphy, S., Peace, B., Jeremy, J. & Dandona, P. (1988) Astrocytes as eicosanoid-producing cells. Glia 4, 241–245.

    Google Scholar 

  • Pellerin, L., Stolz, M., Sorg, O., Martin, J. L., Deschepper, C. F. & Magistretti, P. J. (1997) Regulation of energy metabolism by neurotransmitters in astrocytes in primary culture and in an immortalized cell line. Glia 21, 74–83.

    Google Scholar 

  • Peuchen, S., Bolanos, J. P., Heales, S. J. R., Almeida, A., Duchen, M. R. & Clark, J. B. (1997) Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Progress in Neurobiology 52, 261–281.

    Google Scholar 

  • Poulos, A. (1995) Very long fatty acids in higher animals-a review. Lipids 30, 1–14.

    Google Scholar 

  • Roche, E., Farfari, S., Witters, L. A., Assimacopoulos-Jeannet, F., Thumelis, S., Brun, T., Corkey, B. E., Saha, A. K. & Prentki, M. (1998) Long-term exposure of ?-INS cells to high glucose concentrations increases anaplerosis, lipogenesis and lipogenic gene expression. Diabetes 47, 1086–1094.

    Google Scholar 

  • Schell, M. J., Molliver, M. E. & Snyder, S. H. (1995) D-serine, an endogenous synaptic modulator: Localization to astrocytes and glutamate-stimulated release. Proceedings of the National Academy of Sciences USA 92, 3948–3952.

    Google Scholar 

  • Schoonjans, K., Martin, G., Stael, B. & Auwerx, J. (1997) Peroxisome proliferator-activated receptors, orphans with ligands and functions. Current Opinion in Lipidology 8, 159–166.

    Google Scholar 

  • Schutgens, R. B. H., Romeyn, G. J., Ofman, R., van den Bosch, H., Tager, J. M. & Wanders, R. J. A. (1986) Acyl-CoA dihydroxyacetone phosphate acyltransferase in human skin fibroblasts: Study of its properties using a new assay method. Biochimica et Biophysica Acta 879, 286–291.

    Google Scholar 

  • Singh, I., Carillo, O. & Namboodiri, A. (2000) Isolation and biochemical characterization of peroxisomes from cultured rat glial cells. Neurochemical Research 25, 197–203.

    Google Scholar 

  • Small, G., Burdett, K. & Connok, M. J. (1985) Sensitive spectrophotometric assay for peroxisomal acyl-CoA oxidase. Journal of Biochemistry 227, 205–210.

    Google Scholar 

  • Sprecher, H. (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochimica et Biophysica Acta 1486, 219–231.

    Google Scholar 

  • Stefanini, S., Farrace, M. G. & Ceru’ Argento, M. P. (1985) Differentiation of liver peroxisomes in the foetal and newborn rats: Cytochemistry of catalase and D-aminoacid oxidase. Journal of Embriology and Experimental Morphology 88, 151–163.

    Google Scholar 

  • Stefanini, S., Serafini, B., Cimini, A. M. & Sartori, C. (1994) Differentiation of kidney cortex peroxisomes in fetal and newborn rats. Biology of the Cell 80, 185–193.

    Google Scholar 

  • Steinberg, S. J., Morgenthaler, J., Heinzer, A. K., Smith, K. D. & Watkins, P. A. (2000) Very long-chain acyl-CoA synthetases. Journal of Biological Chemistry 275, 35162–35169.

    Google Scholar 

  • Titorenko, V. I. & Rachubinsky, R. A. (2001) Dynamics of peroxisome assembly and functions. Trends in Cell Biology 11, 22–29.

    Google Scholar 

  • Towbin, H., Staehelin, T. & Gordon, J. (1979) Electrophoretic transfer of proteins frompolyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences USA 76, 4350–4354.

    Google Scholar 

  • Travis, J. (1994) Glia: The brain's other cells. Science 266, 970–972.

    Google Scholar 

  • van den Bosch, H., Schutgens, R. H. B., Wanders, R. J. A. & Tager, J. M. (1992) Biochemistry of peroxisomes. Annual Review of Biochemistry 61, 157–197.

    Google Scholar 

  • Wiesinger, H., Hamprecht, B. & Dringen, R. (1997) Metabolic pathways for glucose in astrocytes. Glia 21, 22–34.

    Google Scholar 

  • Wilson, J. X. (1997) Antioxidant defence of the brain: A role for astrocytes. Cancer Journal of Physiology and Pharmacology 75, 261–281.

    Google Scholar 

  • Yamamoto, M., Ullman, D., Drager, U. C. & McCaffery, P. (1999) Postnatal effects of retinoic acid on cerebellum development. Neurobehavioral Toxicology 21, 141–146.

    Google Scholar 

  • Zetterstrom, R. H., Lindqvist, E., de Urquiza, A. M., Tomac, A., Eriksson, U., Perlmann, T. & Olson, L. (1999) Role of retinoids in the CNS: Differential expression of retinoid proteins and receptors and evidence for presence of retinoic acid. European Journal of Neuroscience 11, 407–416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Paola Cerù.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cristiano, L., Bernardo, A. & Cerù, M.P. Peroxisome proliferator-activated receptors (PPARs) and peroxisomes in rat cortical and cerebellar astrocytes. J Neurocytol 30, 671–683 (2001). https://doi.org/10.1023/A:1016525716209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016525716209

Keywords

Navigation