Skip to main content
Log in

Evaluation of uncertainty in alignment tensors obtained from dipolar couplings

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Residual dipolar couplings and their corresponding alignment tensors are useful for structural analysis of macromolecules. The error in an alignment tensor, derived from residual dipolar couplings on the basis of a known structure, is determined not only by the accuracy of the measured couplings but also by the uncertainty in the structure (structural noise). This dependence is evaluated quantitatively on the basis of simulated structures using Monte-Carlo type analyses. When large numbers of dipolar couplings are available, structural noise is found to result in a systematic underestimate of the magnitude of the alignment tensor. Particularly in cases where only few dipolar couplings are available, structural noise can cause significant errors in best-fitted alignment tensor values, making determination of the relative orientation of small fragments and evaluation of local backbone mobility from dipolar couplings difficult. An example for the protein ubiquitin demonstrates the inherent limitations in characterizing motions on the basis of local alignment tensor magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almond, A. and Duus, J.O. (2001) J. Biomol. NMR, 20, 351–363.

    Google Scholar 

  • Bewley, C.A. and Clore, G.M. (2000) J. Am. Chem. Soc., 122, 6009–6016.

    Google Scholar 

  • Bothner-By, A.A. (1996) in Encyclopedia of Nuclear Magnetic Resonance, Grant, D.M. and Harris, R.K. (Eds.), Wiley, Chichester, pp. 2932–2938.

  • Clore, G.M. (2000) Proc. Natl. Acad. Sci. USA, 97, 9021–9025.

    Google Scholar 

  • Clore, G.M. and Garrett, D.S. (1999) J. Am. Chem. Soc., 121, 9008–9012.

    Google Scholar 

  • Cornilescu, G., Marquardt, J.L., Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 6836–6837.

    Google Scholar 

  • Delaglio, F., Kontaxis, G. and Bax, A. (2000) J. Am. Chem. Soc., 122, 2142–2143.

    Google Scholar 

  • Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C. and Scharf, M. (1995) J. Comput. Chem., 16, 273–284.

    Google Scholar 

  • Emsley, J.W. (1996) in Encyclopedia of Nuclear Magnetic Resonance, Grant, D.M. and Harris, R.K. (Eds.), Wiley, Chichester, pp. 2788–2799.

  • Fischer, M.W.F., Losonczi, J.A., Weaver, J.L. and Prestegard, J.H. (1999) Biochemistry, 38, 9013–9022.

    Google Scholar 

  • Gayathri, C., Bothnerby, A.A., Vanzijl, P.C.M. and Maclean, C. (1982) Chem. Phys. Lett., v87, 192–196.

    Google Scholar 

  • Goto, N.K., Skrynnikov, N.R., Dahlquist, F.W. and Kay, L.E. (2001) J. Mol. Biol., 308, 745–764.

    Google Scholar 

  • Hus, J.C., Marion, D. and Blackledge, M. (2000) J. Mol. Biol., 298, 927–936.

    Google Scholar 

  • Losonczi, J.A., Andrec, M., Fischer, M.W.F. and Prestegard, J.H. (1999) J. Magn. Reson., 138, 334–342.

    Google Scholar 

  • Meiler, J., Prompers, J.J., Peti, W., Griesinger, C. and Bruschweiler, R. (2001) J. Am. Chem. Soc., 123, 6098–6107.

    Google Scholar 

  • Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 12334–12341.

    Google Scholar 

  • Sass, H.J., Musco, G., Stahl, S.J., Wingfield, P.T. and Grzesiek, S. (2000) J. Biomol. NMR, 18, 303–309.

    Google Scholar 

  • Sass, J., Cordier, F., Hoffmann, A., Cousin, A., Omichinski, J.G., Lowen, H. and Grzesiek, S. (1999) J. Am. Chem. Soc., 121, 2047–2055.

    Google Scholar 

  • Saupe, A. and Englert, G. (1963) Phys. Rev. Lett., 11, 462–464.

    Google Scholar 

  • Tjandra, N. and Bax, A. (1997) Science, 278, 1111–1114.

    Google Scholar 

  • Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc., 117, 12562–12566.

    Google Scholar 

  • Tjandra, N., Grzesiek, S. and Bax, A. (1996) J. Am. Chem. Soc., 118, 6264–6272.

    Google Scholar 

  • Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. and Bax, A. (1997) Nat. Struct. Biol., 4, 732–738.

    Google Scholar 

  • Tolman, J.R., Al-Hashimi, H.M., Kay, L.E. and Prestegard, J.H. (2001) J. Am. Chem. Soc., 123, 1416–1424.

    Google Scholar 

  • Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1995) Proc. Natl. Acad. Sci. USA, 92, 9279–9283.

    Google Scholar 

  • Tycko, R., Blanco, F.J. and Ishii, Y. (2000) J. Am. Chem. Soc., 122, 9340–9341.

    Google Scholar 

  • Vermeulen, A., Zhou, H.J. and Pardi, A. (2000) J. Am. Chem. Soc., 122, 9638–9647.

    Google Scholar 

  • Vijay-Kumar, S., Bugg, C.E. and Cook, W.J. (1987) J. Mol. Biol., 194, 531–544.

    Google Scholar 

  • Wang, L.C., Pang, Y.X., Holder, T., Brender, J.R., Kurochkin, A.V. and Zuiderweg, E.R.P. (2001) Proc. Natl. Acad. Sci. USA, 98, 7684–7689.

    Google Scholar 

  • Zweckstetter, M. and Bax, A. (2000) J. Am. Chem. Soc., 122, 3791–3792.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Zweckstetter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zweckstetter, M., Bax, A. Evaluation of uncertainty in alignment tensors obtained from dipolar couplings. J Biomol NMR 23, 127–137 (2002). https://doi.org/10.1023/A:1016316415261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016316415261

Navigation