Skip to main content
Log in

A facile method for the direct synthesis of lanthionine containing cyclic peptides

  • Published:
Letters in Peptide Science Aims and scope Submit manuscript

Abstract

A series of disulfide bridged peptides were designed as potential inhibitors of protein-protein interactions. Following solid phase synthesis, completely deprotected linear peptides were first oxidized to their disulfide analogs and then transformed into their lanthionine equivalents via a base-assisted reaction in water. Peptides consisting of cystine bridges of length i, i+3, with and without discrimination of the chiral centers, were studied for this transformation. Lanthionine peptides were also obtained directly from the reduced linear peptides under mild alkaline treatment, and the reaction proceeded via disulfide bond formation. The extent of conversion of a disulfide bridge into its lanthionine counterpart varied according to the primary sequence. Product characterization revealed diastereomeric lanthionine formation. The presence of D-amino acids, peptide conformation, and/or position of the cystine bridge are among the factors determining the facility of this reaction. Elimination of the backbone proton beta to the sulfur atom followed by intramolecular thiol Michael addition is the most likely mechanism for this transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mulder, G.J., Ann., 28 (1838) 73.

    Google Scholar 

  2. Horn, M.J., Jones, D.B. and Ringel, S.J., J. Biol. Chem., 138 (1941) 141.

    Google Scholar 

  3. Brown, J.B. and du Vigneaud, V.J., Biol. Chem., 140 (1941) 767. b. Brown, J.B. and du Vigneaud, V.J., Biol. Chem., 138 (1941) 151.

    Google Scholar 

  4. Lebl, M. and Hruby, V.J., Tetrahedron Lett., 25 (1984) 2067. b. Nutt, R.F., Veber, D.F. and Saperstein, R., J. Am. Chem. Soc., 102 (1980) 6539. c. Mayer, J.P., Heil, J.R., Zhang, J. and Munson, M.C., Tetrahedron Lett., 36 (1995) 7387.

    Google Scholar 

  5. Fukase, K., Kitazawa, M., Sano, A., Shimbo, K., Fujita, H., Horimito, S., Wakamiya, T. and Shiba, T., Tetrahedron Lett., 29 (1988) 795.

    Google Scholar 

  6. Kelner, R., Jung, G., Horner, T., Zahner, H., Schnell, N., Entian, K. and Gotz, F., Eur. J. Biochem., 177 (1988) 5359.

    Google Scholar 

  7. Zheng, H., Fink, D., Jiang, X.H., Aebi, S., Law, P., Goodman, M. and Howell, S.B., Clin. Cancer Res., 3 (1997) 1323.

    Google Scholar 

  8. Zervas, L. and Ferderigos, N., Isr. J. Chem., 12 (1974) 139.

    Google Scholar 

  9. Polonsky, A., Cooney, M.G., Toy-Palmer, A., Osapay, G. and Goodman, M., J. Med. Chem. 35 (1992) 4185.

    Google Scholar 

  10. Harpp, D.N. and Gleason, J.G., J. Org. Chem., 35 (1970) 3259. b. Harpp, D.N. and Gleason, J.G., J. Org. Chem., 36 (1971) 73.

    Google Scholar 

  11. Shiba, T., Wakamiya, T., Fukase, K., Sano, A., Shimbo, K. and Ueki, Y., Biopolymers, 25 (1986) S11–S19.

    Google Scholar 

  12. Shao, H., Wang, S., Lee, C., Osapay, G. and Goodman, M., J. Org. Chem., 60 (1995) 2956.

    Google Scholar 

  13. Probert, J.M., Rennex, D. and Bradley, M., Tetrahedron Lett., 37 (1996) 2067. b. Yu, L., Lai, Y.,Wade, J.V. and Coutts, S.M., Tetrahedron Lett., 39 (1998) 6633. c. Li, H., Jiang, X. and Goodman, M., J. Peptide Sci., 7 (2001) 82. d. Mayer, J.P., Zhang, J., Groeger, S., Liu, C. and Jarosinski, M.A., J. Peptide Res., 51 (1998) 432.

    Google Scholar 

  14. Earland, C. and Raven, D.J., Nature, 191 (1961) 384.

    Google Scholar 

  15. Danehy, J.P., In N. Kharasch and C.Y. Meyers (Eds), The Chemistry of Organic Sulfur Compounds, Pergamon Press, New York, 1966, 2, pp. 337–349.

    Google Scholar 

  16. Norris, J.D., Paige, L.A., Cristensen, D.J., Chang-Yi, C., Huacani, M.R., Fan, D., Hamilton, P.T., Fowlkes, D.M. and McDonnell, D.P., Science, 285 (1999) 744. b. Leduc, A., Bramlett, K.S., Burris, T.P. and Spatola, A.F., Peptides: The Wave of the Future - 2nd International Peptide Symposium, San Diego, CA, U.S.A., June 9- 14, 2001.

    Google Scholar 

  17. Leduc, A., Masters dissertation, Department of Chemistry, University of Louisville, Louisville, 2001.

    Google Scholar 

  18. Sakakibara, S. and Shimonishi, Y., Bull. Chem. Soc. Japan, 38 (1965) 1412.

    Google Scholar 

  19. Volkmer-Engert, R., Landgraf, C. and Schneider-Mergener, J., J. Peptide Res., 51 (1998) 365.

    Google Scholar 

  20. Andreu, D. and Nicolas, E., In S.A. Kates and F. Albericio (Eds), Solid-Phase Synthesis: A Practical Guide, Marcel Dekker Inc., New York, 2000, pp. 365–375.

    Google Scholar 

  21. Florence, T.M., Biochem. J., 189 (1980) 520.

    Google Scholar 

  22. Swan, J.M., Nature, 179 (1957) 965.

    Google Scholar 

  23. Jones, A.J., Helmerhorst, E. and Stokes, G.B., Biochem. J., 211 (1983) 499.

    Google Scholar 

  24. Cecil, R. and Macphee, J.R., Adv. Protein Chem., 14 (1959) 255.

    Google Scholar 

  25. Toogood, P.L., Tetrahedron Lett., 34 (1993) 7833.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno F. Spatola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galande, A.K., Spatola, A.F. A facile method for the direct synthesis of lanthionine containing cyclic peptides. Letters in Peptide Science 8, 247–251 (2001). https://doi.org/10.1023/A:1016285331403

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016285331403

Navigation