Skip to main content
Log in

Zinc Extraction potential of two common crop plants, Nicotiana tabacum and Zea mays

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

A field study was conducted to investigate the efficiency of Zn phytoextraction by Nicotiana tabacum and Zea mays from a soil that had been artificially contaminated by different amounts of ZnSO4 (0, 50, 150, 350, 750 and 1550 mg kg−1 soil) 10 years prior to the present cropping.

Increased NaNO3-extractable Zn in soil translated well into shoot concentrations (dry matter) in plants. Zn uptake by Z. mays increased linearly with increasing NaNO3-extractable Zn in soil, while for N. tabacum the increase could be described by a Langmuir isotherm. While Z. mays showed no significant decrease in biomass production up to the highest contamination level in soil, N. tabacum responded with a reduction of plant growth of about 50% compared with control plants at the highest Zn concentrations in soil. Maximum removal of Zn was 13 kg ha−1 y−1 with Z. mays and 11 kg ha−1 y−1 with N. tabacum. Calculated time required to reduce soil Zn from 350 to 150 mg kg−1 was about 55 years for N. tabacum and about 63 years for Z. mays at a soil pH of 4.8. At higher soil pH of 6.0 calculated decontamination time was about 87 years for N. tabacum and more than 200 years for Z. mays.

Only small amounts of Zn were translocated into the seeds of N. tabacum and cobs of Z. mays. Therefore, corn cobs of Z. mays could be safely used for fodder and the seeds of N. tabacum, which are rich in oil, for industrial purposes, e.g. in the paint industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chaney R L 1993 Zinc phytotoxicity. In Zinc in Soils and Plants. Ed. A D Robson. pp 135–150. Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Cunningham S C, Berti W R and Huang J W 1995 Phytoremediation of contaminated soils. TIBTECH 13, 393–397.

    Google Scholar 

  • Ebbs S D, Lasat M M, Brady D J, Cornish J, Gordon R and Kochian L V 1997 Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual. 26, 1424–1430.

    Google Scholar 

  • Ebbs S D and Kochian L V 1998 Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ. Sci. Technol. 32(6), 802–806.

    Google Scholar 

  • Edenspace 2000 http://www.phytotech.com:80/CaseStudies.htm.

  • EPA 2000 Brownfields Success Stories: Mustard helping to clean up site. http://www.epa.gov/swerosps/bf/html-doc/ss-trnt1.htm.

  • El-Hamid M F A, El-Naggar H A, El-Sakr A S and Abdel-Hamid MF 1982 Chemical studies on tobacco seed oils from some varieties cultivated in Egypt. Research Bulletin, Fac. Agric., Aiin Shams Univ. No. 1737.

  • FAL, RAC, FAW 1996 Schweizerische Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten, Band 1–4.

  • Felix H R 1997 Field trials for in situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants. Z. Pflanzenernähr. Bodenk. 160, 525–529.

    Google Scholar 

  • FMBV 1995 Futtermittel: Futtermittelverordnung und Futtermittelbuch-Verordnung mit Anhängen. SR 916.307/916.307.1. Schweizerischer Bundesrat und Eigenössisches Volkswirtschaftsdepartement, Bern.

    Google Scholar 

  • Gupta S K 1989 Metallverteilung zwischen fester und löslicher Phase des Bodens und ihre Bedeutung zur Beurteilung ökologischer Probleme. BGS-Bulletin 13, 69–74.

    Google Scholar 

  • Gupta S K and Aten C 1993 Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. Intern. J. Environ. Anal. Chem. 51, 25–46.

    Google Scholar 

  • Hornburg V and Brümmer G W 1993 Verhalten von Schwermetallen in Böden. 1. Untersuchungen zur Schwermetallmobilität. Z. Pflanzenern. Bodenk. 156, 467–477.

    Google Scholar 

  • Jørgensen S E 1993 Removal of heavy metals from compost and soil by ecotechnological methods. Ecol. Eng. 2, 89–100.

    Google Scholar 

  • Kayser A, Wenger K, Keller A, Attinger W, Felix H R, Gupta S K and Schulin R 2000 Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil: the use of NTA and sulphur amendments. Environ. Sci. Technol.

  • Kayser A 2000 Evaluation and enhancement of phytoextraction of heavy metals from contaminated soils. Thesis. ETH Zürich, Zürich.

    Google Scholar 

  • Kumar P B A N, Dushenkov V, Motto H and Raskin I 1995 Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29(5), 1232–1238.

    Google Scholar 

  • Marschner H 1995 Mineral Nutrition of Higher Plants. Academic Press Limited, London. 809 p.

    Google Scholar 

  • McGrath S P, Sidoli C M D, Baker A J M and Reeves R D 1993 The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. In Integrated Soil and Sediment Research: A Basis for Proper Protection. Eds. H J P Eijsackers and T Hamers. pp 673–676. Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • McGrath S P 1998 Phytoextraction for soil remediation. In Plants that Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining. Ed. R R Brooks. pp 261–287. CAB International, Wallingford, Oxon, UK, New York.

    Google Scholar 

  • Mench M, Tancogne J, Gomez A and Juste C 1989 Cadmium bioavailability to Nicotiana tabacum L., Nicotiana rustica L., and Zea mays L. grown in soil amended or not amended with cadmium nitrate. Biol. Fertil. Soils 8, 48–53.

    Google Scholar 

  • Robinson B H, Leblanc M, Petit D, Brooks R R, Kirkman J H and Gregg P E H 1998 The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil 203, 47–56.

    Google Scholar 

  • Schmid T and Wegelin T 1996 Wachstumsstörungen bei Kulturpflanzen durch Schwermetallbelastungen im Boden. FaBo Kanton Zürich.

  • 12html. 01.07.1998.

  • Walther U, Menzi H, Ryser J-P, Flisch R, Jeangros G, Kessler W, Maillard A, Siegenthaler A F and Vuilloud P A 1994 Grundlagen für die Düngung im Acker-und Futterbau. Agrarforschung 1(7), 1–40.

    Google Scholar 

  • Wilcke B M and Metz R 1993 Einsatz von Engergiepflanzen zur Dekontamination schwermetallbelasteter Böden. Ecoinforma 2, 199–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Wenger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenger, K., Gupta, S.K., Furrer, G. et al. Zinc Extraction potential of two common crop plants, Nicotiana tabacum and Zea mays . Plant and Soil 242, 217–225 (2002). https://doi.org/10.1023/A:1016253821174

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016253821174

Navigation