Skip to main content
Log in

The Non-Linear Viscoelastic Response of Polycarbonate in Torsion: An Investigation of Time-Temperature and Time-Strain Superposition

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Data are presented from torsional stress relaxationexperiments on a commercial polycarbonate. Tests were performedon samples over a range of torsional strains from 0.0025 to 0.08and at temperatures from 30 to 110°C at a fixed aging time of64,800 s (18 h). Following the scaling approach of Penn andKearsley [Trans. Soc. Rheol. 20 (1976)] we were able todetermine the stress relaxation response at shear strains to0.07. Then the individual data sets at each strain andtemperature could be described using a stretched exponential formrelaxation function. Over the range of temperatures studied thedata at each strain were superimposed using conventional time-temperature superposition. For strains up to the yield strainthe data at each temperature could also be superimposed to form amaster curve following the principle of time-strainsuperposition. Interestingly, the master curves found from time-strain superposition at each temperature did not have the sameform. Similarly, the master curves found from time-temperaturesuperposition at each strain did not have the same form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bernstein, B. and Shokooh, J., 'The stress function in viscoelasticity', J. Rheology 24, 1980, 189-211.

    Google Scholar 

  • Cerrada, M.L. and McKenna, G.B., 'Physical aging of amorphous PEN-Isothermal, isochronal and isostructural results', Macromolecules 33(8), 2000, 3065-3076.

    Google Scholar 

  • Crissman, J.M. and McKenna, G.B., 'Relating creep and creep rupture in PMMA using a reduced variables approach', J. Polym. Sci., Phys. Ed. 25, 1987, 1667-1677.

    Google Scholar 

  • Doi, M. and Edwards, S.F., 'Dynamics of concentrated polymer systems', J.C.S. Faraday II 74, 1978, 1789-1801.

    Google Scholar 

  • Echeverria, I., Su, P., Simon, S.L. and Plazek, D.J., 'Physical aging of a polyetherimide-Creep and DSC measurements', J. Polym. Sci.: Part B: Polym. Phys. 33, 1996, 2457-2468.

    Google Scholar 

  • Ferry, J.D., Viscoelastic Properties of Polymers, J. Wiley & Son, New York, 1980.

    Google Scholar 

  • Huntley, H.E., Wineman, A.S. and Rajagopal, K.R., 'Application of a constitutive equation for softening, yield and permanent deformation to finite plane simple shear', Arch. Mech. 52(3), 2000, 443-479.

    Google Scholar 

  • Knauss, W.G. and Emri, I., 'Volume change and the nonlinearly thermo-viscoelastic constitution of polymers', Polym. Engrg. Sci. 27, 1987, 86-100.

    Google Scholar 

  • Knauss, W.G. and Zhu, W., 'Nonlinearly viscoelastic behavior of polycarbonate. I. Response under pure shear', Mech. Time Mater. 6, 2002, 231-269.

    Google Scholar 

  • Kohlrausch, F., 'Experimental-untersuchung über die elastische Nachwirkung bei der Torsion, Ausdehnung und Biegunge', Pogg. Ann. Phys. 8, 1876, 337.

    Google Scholar 

  • Kovacs, A.J., Aklonis, J.J., Hutchinson, J.M. and Ramos, A.R., 'Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparmeter model', J. Polym. Sci. Polym. Phys. Ed. 17, 1979, 1097-1162.

    Google Scholar 

  • Lu, H. and Knauss, W.G., 'The role of dilatation in the nonlinearly viscoelastic behavior of PMMA under multiaxial stress states', Mech. Time Mater. 2, 1999, 307-334.

    Google Scholar 

  • Lustig, S.R., Shay, R.M. and Caruthers, J.M., 'Thermodynamic constitutive equations for materials with memory on a material time scale', J. Rheology 40, 1996, 69-106.

    Google Scholar 

  • Markovitz, H., 'Superposition in rheology', J. Polym. Sci.: Polym. Symp. 50, 1975, 431-456.

    Google Scholar 

  • Matsuoka, S., Aloisio, C.J. and Bair, H.E., 'Interpretation of shift of relaxation time with deformation in glassy polymers in terms of excess enthalpy', J. Appl. Phys. 44(10), 1973, 4265-4268.

    Google Scholar 

  • Matsuoka, S., Bair, H.E., Bearder, S.S., Kern, H.W. and Ryan, J.T., 'Analysis of non-linear stress relaxation in polymer glasses', Polym. Engrg. Sci. 18(4), 1978, 1073-1080.

    Google Scholar 

  • McKenna, G.B., 'Measurement of the torque and normal force in torsion in the study of the thermoviscoelastic properties of polymer glasses', in Relaxations in Complex Systems, K.L. Ngai and G.B. Wright (eds), U.S. Government Printing Office, Springfield, VA, 1985, 129-143.

    Google Scholar 

  • McKenna, G.B., 'On the physics required for the prediction of long term performance of polymers and their composites', J. Res. NIST 99, 1994, 169-189.

    Google Scholar 

  • McKenna, G.B. and Kovacs, A., 'Physical aging of poly(methyl methacrylate) in the nonlinear range: Torque and normal force measurements', Polym. Engrg. Sci. 24, 1984, 1131-1141.

    Google Scholar 

  • McKenna, G.B. and Zapas, L.J., 'Viscoelastic behavior of poly(methyl methacrylate): prediction of extensional response from torsional data', in Rheology, Vol. 3: Applications, G. Astaritta, G. Marucci and L. Nicolais (eds), Plenum, New York, 1980, 299-307.

    Google Scholar 

  • Moynihan, C.T., Macedo, P.B., Montrose, C.J., Gupta, P.K., DeBolt, M.A., Dill, J.F., Dom, B.E., Drake, P.W., Esteal, A.J., Elterman, P.B., Moeller, R.P., Sasabe, H. and Wilder, J.A., 'Structural relaxation in vitreous materials', Ann. N.Y. Acad. Sci. 279, 1976, 15-35.

    Google Scholar 

  • Nadai, A., Plasticity: A Mechanics of the Plastic State of Matter, McGraw-Hill, New York, 1931.

    Google Scholar 

  • Narayanaswamy, O.S., 'A model of structural relaxation in glass', J. Amer. Ceram. Soc. 54, 1971, 491-498.

    Google Scholar 

  • Niemiec, J., Schultheisz, C., Shutte, C. and McKenna, G.B., 'Time-temperature and time aging time superposition in polycarbonate below the glass transition', Society Plastic Engineers ANTEC, 1995, 2402.

  • O'Connell, P. and McKenna, G.B., 'Large deformation response of polycarbonate: Timetemperature, time-aging time and time-strain superposition', Polym. Engrg. Sci. 37(9), 1997, 1485-1495.

    Google Scholar 

  • Penn, R.W. and Kearsley, E.A., 'The scaling law for finite torsion of elastic cylinders', Trans. Soc. Rheol. 20, 1976, 227-238.

    Google Scholar 

  • Pesce, J.J. and McKenna, G.B., 'Prediction of the sub-yield extension and compression responses of glassy polycarbonate from torsional measurements', J. Rheology 41(5), 1997, 929-942.

    Google Scholar 

  • Plazek, D.J. and Chelko, A.J., 'Temperature dependence of the steady state recoverable compliance of amorphous polymers', Polymer 18, 1977, 15-18.

    Google Scholar 

  • Rivlin, R.S., 'Stress relaxation in incompressible elastic materials at constant deformation', Quart. Appl. Math. 14, 1956, 83-89.

    Google Scholar 

  • Schapery, R.A., 'On the characterization of nonlinear viscoelastic materials', Polym. Engrg. Sci. 9, 1969, 295-310.

    Google Scholar 

  • Struik, L.C.E., Physical Ageing in Amorphous Polymers, Elsevier, Amsterdam, 1978.

    Google Scholar 

  • Tervoort, T.A., Klompen, E.T.J. and Govaert, L.E., 'A multi-mode approach to finite threedimensional, nonlinear viscoelastic behavior of polymer glasses', J. Rheology 40, 1996, 779-797.

    Google Scholar 

  • Tool, A.Q., 'Relation between inelastic deformability and thermal expansion of glass in its annealing range', J. Amer. Ceram. Soc. 29, 1946, 240-253.

    Google Scholar 

  • Valanis, K.C., 'On the foundations of the endochronic theory of viscoplasticity', Arch. Mech. 27, 1975, 857-869.

    Google Scholar 

  • Wagner, M.H., 'A constitutive analysis of extensional flows of polyisobutylene', J. Rheology 34(6), 1990, 943-958.

    Google Scholar 

  • Williams, G. and Watts, D.C., 'Non-symmetrical dielectric behaviour arising from a simple empirical decay function', Trans. Faraday Soc. 66, 1970, 80-85.

    Google Scholar 

  • Wineman, A.S. and Waldron, Jr.,W.K., 'Yield-like response of a compressible nonlinear viscoelastic solid', J. Rheology 39(2), 1995, 401-423.

    Google Scholar 

  • Zapas, L.J., 'Nonlinear behavior of polyisobutylene solutions', in Deformation and Fracture of High Polymers, H.H. Kausch, J.A. Hassell and R.I. Jaffee (eds), Plenum, New York, 1974, 381-395.

    Google Scholar 

  • Zorn, R., McKenna, G.B., Willner, L. and Richter, D., 'Rheological investigation of polybutadienes having different microstructures over a large temperature-range', Macromolecules 28, 8552-8562.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Connell, P., McKenna, G. The Non-Linear Viscoelastic Response of Polycarbonate in Torsion: An Investigation of Time-Temperature and Time-Strain Superposition. Mechanics of Time-Dependent Materials 6, 207–229 (2002). https://doi.org/10.1023/A:1016205712110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016205712110