Skip to main content
Log in

Heterogeneity Effects on Permeability–Partition Coefficient Relationships in Human Stratum Corneum

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The relationship between the permeability of solutes undergoing transport via the lipid pathway of the stratum corneum and the degree to which the same solutes partition into the stratum corneum has been explored by measuring the permeability coefficients and stratum corneum/water partition coefficients of a series of hydrocortisone esters varying in lipophilicity. Isolated human stratum corneum, used in both the permeability and the uptake experiments, was shown to resemble full-thickness skin in its overall resistance and selectivity to solute structure. As with full-thickness skin, delipidization destroys the barrier properties of isolated stratum corneum. Although a linear relationship is frequently assumed to exist between permeability coefficients and membrane/water partition coefficients, a log–log plot of permeability coefficients versus the intrinsic stratum corneum/water partition coefficients for the series of hydrocortisone esters studied is distinctly nonlinear. This nonlinearity arises from the fact that the transport of these solutes is rate limited by a lipid pathway in the stratum corneum, while uptake reflects both lipid and protein domains. From the relative permeability coefficients of 21-esters of hydrocortisone varying in acyl-chain structure, group contributions to the free energy of transfer of solute into the rate-limiting barrier microenvironment of the stratum corneum lipid pathway are calculated for a variety of functional groups including the −CH2−, −CONH2, −CON(CH3)2, -COOCH3, −COOH, and −OH groups. These are compared to contributions to the free energies of transfer obtained for the same functional groups in octanol/water, heptane/water, and stratum corneum/water partitioning experiments. The group contributions to transport for polar, hydrogen-bonding functional groups are similar to the values obtained from octanol/water partition coefficients. This similarity suggests that complete loss of hydrogen bonding does not occur in the transition state for passive diffusion via the lipid pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. J. Scheuplein. J. Invest. Dermatol. 48:79–88 (1967).

    Google Scholar 

  2. R. J. Scheuplein and I. J. Blank. Physiol. Rev. 51:702–747 (1971).

    Google Scholar 

  3. S. K. Chandrashekaran and J. E. Shaw. Curr. Probl. Dermatol. 7:172–186 (1978).

    Google Scholar 

  4. G. L. Flynn, H. Durrheim, and W. I. Higuchi. J. Pharm. Sci. 70:52–56 (1981).

    Google Scholar 

  5. G. L. Flynn. In R. Bronaugh and H. Maibach (eds.), Mechanism of Percutaneous Absorption from Physicochemical Evidence, Marcel Dekker, New York, 1985, pp. 17–42.

    Google Scholar 

  6. R. J. Scheuplein, I. H. Blank, G. D. Brauner, and D. J. MacFarlane. J. Invest. Dermatol. 52:63–70 (1969).

    Google Scholar 

  7. A. J. Michaels, S. K. Chandrasekaran, and J. E. Shaw. AIChE J. 21:985–996 (1975).

    Google Scholar 

  8. P. M. Elias, E. R. Cooper, A. Korc, and B. E. Brown. J. Invest. Dermatol. 76:297–301 (1981).

    Google Scholar 

  9. W. P. Smith, M. S. Christenson, S. Nacht, and E. H. Gans. J. Invest. Dermatol. 78:7–11 (1982).

    Google Scholar 

  10. P. M. Elias. Arch. Dermatol. Res. 270:95–117 (1981).

    Google Scholar 

  11. P. M. Elias and D. S. Friend. J. Cell Biol. 65:180–191 (1975).

    Google Scholar 

  12. P. M. Elias, B. E. Brown, P. Fritsch, J. Goerke, G. M. Gray, and R. J. White. J. Invest. Dermatol. 73:339–348 (1979).

    Google Scholar 

  13. P. M. Elias, J. Goerke, and D. S. Friend. J. Invest. Dermatol. 69:535–546 (1977).

    Google Scholar 

  14. P. V. Raykar, M. Fung, and B. D. Anderson. Pharm. Res. 5:140–150 (1988).

    Google Scholar 

  15. A. M. Kligman and E. Christophers. Arch. Dermatol. 88:702–705 (1963).

    Google Scholar 

  16. L. Juhlin and W. B. Shelly. Acta Derm. Venereol. 57:289–96 (1977).

    Google Scholar 

  17. E. G. Bligh and W. J. Dyer. Can. J. Biochem. Physiol. 37:911–917 (1959).

    Google Scholar 

  18. R. Scheuplein and L. Ross. J. Soc. Cosmet. Chem. 21:853–873 (1970).

    Google Scholar 

  19. A. Leo, C. Hansch, and D. Elkins. Chem. Rev. 71:525–554 (1971).

    Google Scholar 

  20. H. Durrheim, G. L. Flynn, W. I. Higuchi, and C. R. Behl. J. Pharm. Sci. 69:781–786 (1980).

    Google Scholar 

  21. T. A. Hagen and G. L. Flynn. J. Membr. Sci. 30:47–65 (1987).

    Google Scholar 

  22. D. D. Perrin. Aust. J. Chem. 16:572–578 (1963).

    Google Scholar 

  23. C. Ackerman, G. L. Flynn, and W. M. Smith. Int. J. Pharm. 36:67–71 (1987).

    Google Scholar 

  24. M. M. Saket, K. C. James, and I. W. Kellaway. Int. J. Pharm. 27:287–298 (1985).

    Google Scholar 

  25. B. D. Anderson. In S. H. Yalkowsky, A. A. Sinkula, and S. C. Valvani (eds.), Physical Chemical Properties of Drugs, Marcel Dekker, New York, 1980, Chap. 7.

    Google Scholar 

  26. W. L. Hubbell and H. M. McConnell. J. Am. Chem. Soc. 93:314 (1971).

    Google Scholar 

  27. J. Seelig and A. Seelig. Q. Rev. Biophys. 13:19–61 (1980).

    Google Scholar 

  28. J. A. Marqusee and K. A. Dill. J. Chem. Phys. 85:434–444 (1986).

    Google Scholar 

  29. L. DeYoung and K. A. Dill (submitted for publication).

  30. W. M. Smith. An Inquiry into the Mechanism of Percutaneous Absorption of Hydrocortisone and Its 21-n-Alkyl Esters, Ph.D. thesis, University of Michigan, Ann Arbor, 1982.

  31. W. J. Lambert. Ph.D. thesis, University of Utah, Salt Lake City, 1988.

  32. J. L. Fox, G. L. Flynn, T. Hagen, W. I. Higuchi, N. F. H. Ho, and H. Durrheim. Abstracts, APhA Academy of Pharmaceutical Sciences, Vol. 8(2), Nov. 1978, p. 100.

    Google Scholar 

  33. P. J. M. Stout, N. Khoury, J. Mauger, and S. Howard. J. Pharm. Sci. 75:65–67 (1986).

    Google Scholar 

  34. K. A. Johnson, G. B. Westermann-Clark, and D. O. Shah. J. Pharm. Sci. 76:277–285 (1987).

    Google Scholar 

  35. T. Yotsuyanagi and W. I. Higuchi. J. Pharm. Pharmacol. 24:934–941 (1972).

    Google Scholar 

  36. Y. Katz, M. E. Hoffman, and R. Blumenthal. J. Theor. Biol. 105:493–510 (1983).

    Google Scholar 

  37. J. M. Diamond and Y. Katz. J. Membr. Biol. 17:121–154 (1974).

    Google Scholar 

  38. W. R. Lieb and W. D. Stein. In W. D. Stein (ed.), Transport and Diffusion Across Cell Membranes, Academic Press, New York, 1986, Chap. 2.

    Google Scholar 

  39. S. S. Davis, T. Higuchi, and J. H. Rytting. In H. S. Bean, A. H. Beckett, and J. E. Carless (eds.), Advances in Pharmaceutical Sciences, Vol. 4, Academic Press, New York, 1974.

    Google Scholar 

  40. P. Raykar. Stratum Corneum Domain Effects on Solute Uptake and Transport, Ph.D. thesis, University of Utah, Salt Lake City, 1988.

  41. B. D. Anderson and R. A. Conradi. J. Pharm. Sci. 69:424–430 (1980).

    Google Scholar 

  42. J. H. Rytting, L. P. Huston, and T. Higuchi. J. Pharm. Sci. 67:615–618 (1978).

    Google Scholar 

  43. J. Iwasa, T. Fujita, and C. Hansch. J. Med. Chem. 8:150 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, B.D., Higuchi, W.I. & Raykar, P.V. Heterogeneity Effects on Permeability–Partition Coefficient Relationships in Human Stratum Corneum. Pharm Res 5, 566–573 (1988). https://doi.org/10.1023/A:1015989929342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015989929342

Navigation