Skip to main content
Log in

Mechanism Study for Thermal/Electric Field Poling of Fused Silica

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

On the basis of the experimental reports, the mechanism of the second-order susceptibility χ(2) for the thermal/electric field poling of fused silica is analyzed, and expressions for χ(2) are detailedly derived and numerically calculated for the first time. By comparison the theoretical value of χ(2) with the experiment results, we propose that the effective χ(2) is created via both the interaction of the intense electric field with the third-order susceptibility χ(3) and the dipole orientation. The theoretical results show that, in the differently applied voltage, the dipole orientation and χ(3) play different role in the formation of χ(2). This theory successfully explains some experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.-M. Liu, X.-H. Sun and M.-D. Zhang, Jpn.J.Appl.Phys., 39 (2000), 4881.

    Google Scholar 

  2. X.-M. Liu and M.-D. Zhang, Jpn.J.Appl.Phys., 40 (2001), 4069.

    Google Scholar 

  3. T.G. Alley, S.R.J. Brueck and R.A. Myers, J.Non-Crystal Solids, 242 (1998), 165.

    Google Scholar 

  4. T.G. Alley and S.R.J. Brueck, Opt.Lett., 23 (1998), 1170.

    Google Scholar 

  5. P.G. Kazansky, P.S.J. Russell and H. Takebe, J.Lightwave Tech., 15 (1997), 1484.

    Google Scholar 

  6. P.G. Kazansky, V. Pruneri, in Bragg Gratings, Photosensitivity and Poling in Glass Fibers and Waveguides: Applications and Fundamentals. Vol.17 of 1997 OSA Technical Digest Series (Optical Society of American, Washington, D.C., 1997), P.305

    Google Scholar 

  7. P.G. Kazansky, A.R. Smith and S.J. Russell, Appl.Phys.Lett., 68(1996), 269.

    Google Scholar 

  8. P.G. Kazansky, P.S.J. Russel, Opt. Comm., 110(1994), 611.

    Google Scholar 

  9. V. Pruneri, F. Samoggia, G. Bonfrate, et al., Appl.Phys.Lett., 74 (1999), 2423.

    Google Scholar 

  10. W. Xu, J. Arentoft, D. Wong and S. Fleming, IEEE Photon.Technol.Lett., 11 (1999), 1265.

    Google Scholar 

  11. V. Mizrahi, Y. Hibino and G. Stegeman, Opt.Comm., 78(1990), 283.

    Google Scholar 

  12. Y.R. Shen, The Principles of Nonlinear Optics (wiley, New York, 1984), Chap.11, P.197.

    Google Scholar 

  13. R.W. Boyd, Nonlinear Optics (academic press inc., New York, 1992). Chap.4, P.181.

    Google Scholar 

  14. V. Dominic and J. Feinberg, Opt.Lett., 17(1992), 1761.

    Google Scholar 

  15. T. Fujiwara, M. Takahashi, and A.J. Ikushima, “Large SHG in UV-poled silica glass”, in Bragg Gratings, Photosensitivity and Poling in Glass Fibers and Waveguides: Applications and Fundamentals. Vol.17 of 1997 OSA Technical Digest Series (Optical Society of American, Washington, D.C., 1997), 290~292

    Google Scholar 

  16. B. Lesche, F.C. Garcia, E.N. Hering, et al., Phys.Rev.Lett., 78(1997), 2172.

    Google Scholar 

  17. J.W. Wu, J.Opt.Soc.Am.B, 8(1991), 142.

    Google Scholar 

  18. D. M. Burland, R.D. Miller and C.A. Walsh, Chem.Rev., 94(1994), 31.

    Google Scholar 

  19. S. Kielich, IEEE J.Quant.Electron. QE-5(1969), 562

    Google Scholar 

  20. A.H. Edwards and W.B. Fowler, Phys.Rev.B, 26(1982), 6649.

    Google Scholar 

  21. D.M. Burland, C.A. Walsh, E. Kajzar et al., J.Opt.Soc.Am.B, 8(1991), 2269.

    Google Scholar 

  22. T. Fujiwara, M. Takahashi, A.J. Zkushima, Appl. Phys. Lett., 71(1997), 1032.

    Google Scholar 

  23. H. Nasu, H. Okamoto, A. Mito, et al., Jpn.J.Appl.Phy., 32(1993), L406.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lui, XM., Zhang, MD. Mechanism Study for Thermal/Electric Field Poling of Fused Silica. International Journal of Infrared and Millimeter Waves 22, 1643–1651 (2001). https://doi.org/10.1023/A:1015056414886

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015056414886

Navigation