Skip to main content
Log in

Estimating Gaseous Mercury Emissions from Contaminated Floodplain Soils to the Atmosphere with Simple Field Measurement Techniques

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The atmospheric emission of mercury (Hg) from a contaminatedwetlands system was studied in the floodplains along the riverElbe (Northern Germany). Results suggest that wetlands can beimportant transformation and phase transfer regions, linking theterrestrial, aquatic and atmospheric compartments of regionalbiogeochemical Hg cycles. Fluxes determined by flux chambermeasurements averaged 43 ± 5 ng m-2 h-1. Additionally,soil gas probe sampling was introduced to determine mercuryconcentrations in soil air. This technique shows some promise fordetecting and confining mercury contamination in soils. We alsopropose that measurements of total gaseous mercury (TGM) in soilair and the near-surface atmosphere, in combination with simplesoil physical parameters, may be suitable for calculatingsemiquantitative estimates of Hg evaporation from contaminatedsoils, based on laminar diffusion considerations. The results arecompared to other Hg flux measurements, and the advantages anddisadvantages of different approaches to quantify Hg emissionsfrom soils are discussed, especially with regard to possiblesystematic bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Advokaat, E. M. and Lindberg, S. E.: 1996, ‘Effect of rainfall exclusion on air/surface exchange rates of mercury over forest soils’, in R.D. Wilken and S.E. Lindberg (eds.), Proc. 4th Int. Conf. Mercury as a Global Pollutant, Hamburg, Germany, August 4.–8. 1996, p. 458.

  • Carpi, A. and Lindberg, S. E.: 1997, ‘The sunlight mediated emission of elemental mercury from soil amended with municipal sewage sludge’, Environ. Sci. Technol. 31, 2085–2091.

    Google Scholar 

  • Carpi, A. and Lindberg, S. E.: 1998, ‘Application of a Teflon dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil’, Atmos. Environ. 32, 873–882.

    Google Scholar 

  • Danielson, R. E. and Sutherland, P. L.: 1986, ‘Porosity’, in A. Klute (ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Am. Soc. Agron.–Soil Sci. Soc. Am., Madison, WI, USA, pp. 443–461.

    Google Scholar 

  • De Bortoli, M., Ghezzi, E., Knöppel, H. and Vissers, H.: 1999, ‘A new test chamber to measure material emissions under controlled air velocity’, Environ. Sci. Technol. 33, 1760–1765.

    Google Scholar 

  • Fitzgerald, W. F.: 1986, ‘Cycling of mercury between the atmosphere and oceans’, in P. Buat-Ménard (ed.), in The role of air-sea exchange in geochemical cycling, D. Reidel Publishing Company, Dordrecht, The Netherlands, pp. 363–408.

    Google Scholar 

  • Gao, F., Yates, S. R., Yates, M. V., Gan, J. and Ernst, F. F.: 1997, ‘Design, fabrication, and application of a dynamic chamber for measuring gas emissions from soils’, Environ. Sci. Technol. 31, 148–153.

    Google Scholar 

  • Gustin, M. S. et al.: 1999a, ‘Nevada STORMS project: measurement of mercury emissions from naturally enriched surfaces’, J. Geophys. Res. D104, 21831–21844.

    Google Scholar 

  • Gustin, M. S., Rasmussen, P., Edwards, G., Schroeder, W. and Kemp, J.: 1999b, ‘Application of a laboratory gas exchange chamber for assessment of in situ mercury emission’, J. Geophys. Res. D104, 21873–21878.

    Google Scholar 

  • Hanson, P. J., Lindberg, S. E., Tabberer, T. A., Owens, J. G. and Kim, K. H.: 1995, ‘Foliar exchange of mercury vapor: evidence for a compensation point’, Water, Air, Soil Pollut. 80, 373–382.

    Google Scholar 

  • Johnson, D. W. and Lindberg, S. E.: 1995, ‘The biogeochemical cycling of Hg in forests: alternative methods for quantifying total deposition and soil emission’, Water, Air, Soil Pollut. 80, 1069–1077.

    Google Scholar 

  • Kim, K. H. and Lindberg, S. E.: 1995, ‘Design and initial tests of a dynamic enclosure chamber for measurements of vapor-phase mercury fluxes over soils’, Water Air Soil Pollut. 80, 1059–1068.

    Google Scholar 

  • Kim, K. H., Lindberg, S. E. and Meyers, T. P.: 1995, ‘Micrometeorological measurements of mercury vapor fluxes over background forest soils in Eastern Tennessee’, Atmos. Environ. 29, 267–282.

    Google Scholar 

  • Leonard, T. L., Gustin, M. S. and Taylor, G. E.: 1996, ‘Mercury volatilization from riparian vegetation' in R. D. Wilken and S. E. Lindberg (eds), Proc. 4th Int. Conf. Mercury as a Global Pollutant, Hamburg, Germany, August 4.–8. 1996, p. 202.

  • Lindberg, S. E., Jackson, D. R., Huckabee, J. W., Janzen, S. A., Levin, M. J. and Lund, J. R.: 1979, ‘Atmospheric emission and plant uptake of mercury from agricultural soils near the Almadén mercury mine’, J. Environ. Qual. 8, 572–578.

    Google Scholar 

  • Lindberg, S. E., Meyers, T. P., Taylor, G. E., Turner, R. R. and Schroeder, W. H.: 1992, ‘Atmosphere-surface exchange of mercury in a forest: Results of modelling and gradient approaches’, J. Geophys. Res. 97D, 2519–2528.

    Google Scholar 

  • Lindberg, S. E., Kim, K. H., Meyers, T. P. and Owens, J. G.: 1995, ‘Micrometeorological gradient approach for quantifying air/surface exchange of mercury vapor: tests over contaminated soils’, Environ. Sci. Technol. 29, 126–135.

    Google Scholar 

  • Lindberg, S. E.: 1996, ‘Forests and the global biogeochemical cycle of mercury: the importance of understanding air/vegetation exchange processes’, in W. Baeyens, R. Ebinghaus and O. Vasiliev (eds), Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 359–380.

    Google Scholar 

  • Lindberg, S. E. and Price, J.: 1999, ‘Measurements of the airborne emission of mercury from municipal landfill operations: a short-term study in Florida’, J. Air Waste Managem. Assoc. 49, 174–185.

    Google Scholar 

  • Lindberg, S. E. et al.: 1999, ‘Increase in mercury emissions from desert soils in response to rainfall and irrigation’, J. Geophys. Res. D104, 21879–21888.

    Google Scholar 

  • Millington, R. J.: 1959, ‘Gas diffusion in porous media’, Science 130, 100–102.

    Google Scholar 

  • Poissant, L. and Casimir, A.: 1998, ‘Water-air and soil-air exchange rate of total gaseous mercury measured at background sites’, Atmos. Environ. 32, 883–893.

    Google Scholar 

  • Schlüter, K., Seip, H. M. and Alstad, J.: 1995, ‘Mercury translocation in and evaporation from soil: I. Soil lysimeter experiments with 203Hg radiolabelled compounds’, J. Soil Contam. 4, 269–298.

    Google Scholar 

  • Schroeder, W. H., Keeler, G., Kock, H. H., Roussel, P., Schneeberger, D. and Schaedlich, F.: 1995, ‘International field intercomparison of atmospheric mercury measurement methods’, Water, Air, Soil Pollut. 80, 611–620.

    Google Scholar 

  • Schroeder, W. H., Munthe, J. and Lindqvist, O.: 1989, ‘Cycling of mercury between water, air and soil compartments of the environment’, Water, Air, Soil Pollut. 48, 337–347.

    Google Scholar 

  • Sproule, J. W., Shiu, W. Y., Mackay, D., Schroeder, W. H., Russell, R. W. and Gobas, F. A. P. C.: 1991, ‘Direct in situ sensing of the fugacity of hydrophobic chemicals in natural waters’, Environ. Toxicol. Chem. 10, 9–20.

    Google Scholar 

  • Stull, R. B.: 1988, An introduction to boundary layer meteorology, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 1–666.

    Google Scholar 

  • Wallschläger, D., Desai, M. V. M. and Wilken, R. D.: 1996, ‘The role of humic substances in the aqueous mobilization of mercury from contaminated floodplain soils’, Water, Air, Soil Pollut. 90, 507–520.

    Google Scholar 

  • Wallschläger, D., Desai, M. V. M., Spengler, M. and Wilken, R. D.: 1998a, ‘Mercury speciation in floodplain soils and sediments along a contaminated river transect’, J. Environ. Qual. 27, 1034–1044.

    Google Scholar 

  • Wallschläger, D., Desai, M. V. M., Spengler, M., Windmöller, C. C. and Wilken, R. D.: 1998b, ‘How humic substances dominate mercury geochemistry in contaminated floodplains and sediments’, J. Environ. Qual. 27, 1044–1054.

    Google Scholar 

  • Wallschläger, D., Hintelmann, H., Evans, R. D. and Wilken, R. D.: 1995, ‘Volatilization of dimethylmercury and elemental mercury from river Elbe floodplain soils’, Water, Air, Soil Pollut. 80, 1325–1329.

    Google Scholar 

  • Wallschläger, D., Kock, H. H., Schroeder, W. H., Lindberg, S. E., Ebinghaus, R. and Wilken, R. D.: 2000, ‘Mechanism and significance of mercury volatilization from contaminated floodplains of the German river Elbe’, Atmos. Environ. 34, 3745–3755.

    Google Scholar 

  • Wallschläger, D., Turner, R. R., London, J., Ebinghaus, R., Kock, H. H., Sommar, J. and Xiao, Z.: 1999, ‘Factors affecting the measurement of mercury emissions from soils with flux chambers’, J. Geophys. Res. 104D, 21859–21871.

    Google Scholar 

  • Wallschläger, D. and Wilken, R. D.: 1997, ‘The influence of floodplains on mercury availability’, in J.F. Dwyer, T.R. Doane and M.L. Hinman (eds), Environmental toxicology and risk assessment: Modeling and risk assessment (6th volume), ASTMSTP 1317; ASTM, West Conshohocken, PA, 1997; pp. 179–196.

  • Xiao, Z., Munthe, J., Schroeder, W. H. and Lindqvist, O.: 1991, ‘Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden’, Tellus 43B, 267–279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Wallschläger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallschläger, D., Kock, H.H., Schroeder, W.H. et al. Estimating Gaseous Mercury Emissions from Contaminated Floodplain Soils to the Atmosphere with Simple Field Measurement Techniques. Water, Air, & Soil Pollution 135, 39–54 (2002). https://doi.org/10.1023/A:1014711831589

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014711831589

Navigation