Skip to main content
Log in

Nickel Biosorption by Free and Immobilized Cells of Pseudomonas fluorescens 4F39: A Comparative Study

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The biosorption of nickel ions on Pseudomonasfluorescens 4F39 free cells or immobilized cells in beads of agar (biobeads)has been studied in batch experiments to determine the effect ofcell immobilization on the metal accumulation properties of bothsystems. Bacterial cells were immobilized in agar beads followingthe interphase technique. When free cells were used, the sorptionequilibrium was reached in 5 min but with biobeads it took 24 hr as a consequence of metal diffusion. The pH of the Ni2+solution was found to be critical for Ni2+ accumulation,the optimum being 8, although the magnitude of this effect waslower in immobilized cells. The equilibrium data have been analysed using the Langmuir adsorption model. The q max of free cells, immobilized cells and biobeads was 145, 37 and7.6 mg Ni2+/g dry sorbent, respectively. The removal capacity of free cells and immobilized cells increased when the cell concentration decreased. The maximum removal efficiency ofbiobeads was obtained when the cell concentration was 1.43 mg drycells/mL Ni2+ solution. The agar concentration in biobeads affected the Ni2+ accumulation, the optimum being 2%. Desorption of Ni2+ with 0.5 mM dipicolinic acid was efficient. Cycles of accumulation/desorption resulted in a lossof non immobilized cells. An increase of the removal efficiencyfrom the first cycle of accumulation/desorption was observed with biobeads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajmal, M., Ali Khan Rao, R. and Bilquees Ara, S.: 1996, ‘Studies on Removal and Recovery of Cr(VI) from Electroplating Wastes’, Water Res. 30, 1478–1482.

    Google Scholar 

  • Bailey, S. E., Olin, T. J., Bricka, R. M. and Adrian, D. D.: 1999, ‘A Review of Potentially Low-cost Sorbents for Heavy Metals’, Water Res. 33, 2469–2479.

    Google Scholar 

  • Bridson, E. Y. and Brecker, A.: 1970, ‘Design and Formulation of Microbial Culture Media’, in J. R. Norris and D. W. Ribbons (eds), Methods in Microbiology, Vol. 3A, Academic Press, London, pp. 229–295.

    Google Scholar 

  • Brierley, C. L., Brierley, J. A. and Davidson, M. S.: 1989, ‘Applied Microbial Processes for Metals Recovery and Removal from Wastewater’, in T. J. Beveridge and R. J. Doyle (eds), Metal Ions and Bacteria, John Wiley & Sons, NY, U.S.A., pp. 359–382.

    Google Scholar 

  • Collins, Y. E. and Stotzky, G.: 1992, ‘Heavy Metals Alter the Electrokinetic Properties of Bacteria, Yeast, and Clay Minerals’, Appl. Environ. Microbiol. 58, 1592–1600.

    Google Scholar 

  • Di Simine, D., Finoli, C., Vecchio, A. and Andreoni, V.: 1998, ‘Metal Ion Accumulation by Immobilised Cells of Brevibacterium sp.’, J. Ind. Microbiol. Biotechnol. 20, 116–120.

    Google Scholar 

  • Flemming, C. A., Ferris, F. G., Beveridge, T. J. and Bailey, G. W.: 1990, ‘Remobilization of Toxic Heavy Metals Adsorbed to Bacterial Wall-clay Composites’, Appl. Environ. Microbiol. 56, 3191-3203.

    Google Scholar 

  • Gadd, G. M. and White, C.: 1989, ‘Removal of Thorium from Simulates Acid Process Steams by Fungal Biomass’, Biotech. Bioengin. 33, 592–599.

    Google Scholar 

  • Garnham, G. W., Codd, G. A. and Gadd, G. M.: 1992, ‘Accumulation of Cobalt, Zinc and Manganese by the Stuarine Green Microalga Chlorella salina Immobilized in Alginate Microbeads’, Env. Sci. Technol. 26, 1764–1770.

    Google Scholar 

  • Gourdon, R., Rus, E., Bhende, S. and Sofer, S. S.: 1990, ‘Mechanism of Cadmium Uptake by Activate Sludge’, Appl. Microbiol. Biotechnol. 34, 274–278.

    Google Scholar 

  • Holan, Z. R. and Volesky, B.: 1994, ‘Biosorption of Lead and Nickel by Biomass of Marine Algae’, Biotechnol. and Bioengin. 43, 1001–1009.

    Google Scholar 

  • Holan, Z. R., Volesky, B. and Prasetyo, I.: 1993, ‘Biosorption of Cadmium by Biomass of Marine Algae’, Biotechnol. Bioeng. 41, 819–825.

    Google Scholar 

  • Izquierdo, A. and Beltran, J. L.: 1988, ‘SOL1: A Program for the Simulation of Complex Equilibria Using a Personal Computer’, J. Chemometrics 3, 209–216.

    Google Scholar 

  • Kapoor, A., Viraraghavan, T., Cullimore, D. R.: 1999, ‘Removal of Heavy Metals Using the Fungus Aspergillus niger’, Bioresour. Technol. 70, 95–104.

    Google Scholar 

  • Kratochvil, D. and Volesky, B.: 1998, ‘Advances in the Biosorption of Heavy Metals’, TIBTECH 16, 291–300.

    Google Scholar 

  • Leusch, A., Holan, Z. R. and Volesky, B.: 1995, ‘Biosorption of Heavy Metals (Cd, Cu, Ni, Pb, Zn) by Chemically-Reinforced Biomass of Marine Algae’, J. Chem. Tech. Biotechnol. 62, 279–288.

    Google Scholar 

  • López, A., Lázaro, N. and Marqués, A. M.: 1997, ‘The Interphase Technique: A Simple Method of Cell Immobilization in Gel-beads’, J. Microbiol. Methods 30, 231–234.

    Google Scholar 

  • López, A., Lázaro, A., Priego, J. M. and Marqués, A. M.: 2000, ‘Effect of pH on the Biosorption of Nickel and Other Heavy Metals by Pseudomonas fluorescens 4F39’, J. Ind. Microbiol. Biotechnol. 24, 146–151.

    Google Scholar 

  • Paknikar, K. M., Puranik, P. R. and Pethkar, A. V.: 1999, ‘Development of Microbial Biosorbents – A Need for Standardization of Experimental Protocols’, in R. Amils and A. Ballester (eds), Biohydrometallurgy and the Environment Toward the Mining of the 21st Century, Part B, Proceedings of the International Biohydrometallurgy Symposium IBS' 99, San Lorenzo del Escorial, Spain, June 20–23 1999, Elsevier, Amsterdam, pp. 363–372.

    Google Scholar 

  • Rius, N. and Loren, J. G.: 1998, ‘Buffering Capacity and Membrane H+Conductance of Neutrophilic and Alkalophilic Gram-positive Bacteria’, Appl.Env.Microb. 64, 1344–1349.

    Google Scholar 

  • Sag, Y. and Kutsal, T.: 1997, ‘The Simultaneous Biosorption Process of Lead(II) and Nickel(II) on Rhizopus arrhizus’, Process Biochem. 32, 591–597.

    Google Scholar 

  • Sar, P., Kazy, S. K., Asthana, R. K. and Singh S. P.: 1999 'Metal Adsorption and Desorption by Liophilized Pseudomonas aeruginosa’, Int. Biodeterior. Biodegrad. 44, 101–110.

    Google Scholar 

  • Stolp, H. and Gadkari, D.: 1981, ‘Nonpathogenic Members of the Genus Pseudomonas’, in M. P. Starr et al.(eds), The Prokaryote. A Handbook on Habitats, Isolation and Identification of Bacteria, Vol. 1, Springer Verlag, Berlin, pp. 719–741.

    Google Scholar 

  • Suderman, W. and Oskarson, A.: 1991, ‘Nickel’, in E. Merian (ed.), Metals and their Compounds in the Environment, VCH Publishers Inc, New York, U.S.A., pp. 1101–1116.

    Google Scholar 

  • Tsezos, M.: 1988, ‘The Performance of a New Biological Adsorbent for Metal Recovery. Modeling and Experimental Results’, in P. R. Norris and D. P. Kelly (eds), Biohydrometallurgy, Proceedings of the International Symposium Warwick 1987, Science and Technology Letters, pp. 465–475.

  • Valentine, N. B., Bolton Jr., H., Kingsley, M. T., Drake, G. R., Balkwill, D. L. and Plymale, A. E.: 1996, ‘Biosorption of Cadmium, Cobalt, Nickel and Strontium by a Bacillus simplex Strain Isolated from a Vadose Zone’, J. Ind. Microbiol. 16, 189–196.

    Google Scholar 

  • Veglió, F. and Beolchini, F.: 1997, ‘Removal of Metals by Biosorption: A Review’, Hydrometallurgy 44, 301–316.

    Google Scholar 

  • Veglió, F., Beolchini, F. and Gasbarro, A.: 1997, ‘Biosorption of Toxic Metals: An Equilibrium Study Using Free Cells of Artrobacter sp.’, Process Biochem. 32, 99–105.

    Google Scholar 

  • Volesky, B.: 1990, ‘Biosorption and Biosorbents’, in B. Volesky (ed.), Biosorption of Heavy Metals, CRC Press, Boca Raton, Fl, U.S.A., pp. 3–5.

    Google Scholar 

  • Volesky, B.: 1994, ‘Advances in Biosorption of Metals: Selection of Biomass Types’, FEMS Microbiol. Rev. 14, 291–302.

    Google Scholar 

  • Volesky, B.: 1999, ‘Biosorption for the Next Century’, in R. Amils and A. Ballester (eds), Biohydrometallurgy and the Environment Toward the Mining of the 21st Century, Part B, Proceedings of the International Biohydrometallurgy Symposium IBS' 99, San Lorenzo del Escorial, Spain, June 20–23 1999, Elsevier, Amsterdam, pp. 161–173.

    Google Scholar 

  • Wong, P. K. and Know, S. C.: 1992, ‘Accumulation of Nickel Ion (Ni+2) by Immobilized Cells of Enterobacter Species’, Biotechnol. Lett. 14, 629–634.

    Google Scholar 

  • Zouboulis, A. I., Rousou, E. G., Matis, K. A. and Hancock, I. C.: 1999, ‘Removal of Toxic Metals from Aqueous Mixtures. Part 1: Biosorption’, J. Chem. Technol. Biotechnol. 74, 429–436.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Marqués.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, A., Lázaro, N., Morales, S. et al. Nickel Biosorption by Free and Immobilized Cells of Pseudomonas fluorescens 4F39: A Comparative Study. Water, Air, & Soil Pollution 135, 157–172 (2002). https://doi.org/10.1023/A:1014706827124

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014706827124

Navigation