Skip to main content
Log in

Vigabatrin; its effect on the electrophysiology of vision

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Vigabatrin is known to induce visual field defects in approximately one third of patients treated with the drug. It is apparent from electrophysiological studies that the cause of this defect is at retinal level probably as a result of the build up of GABA. Studies of electrophysiological retinal parameters such as the EOG and photopic, scotopic and 30-Hz flicker ERG have revealed changes in Arden Index, photopic a and b wave latency and amplitude, changes in oscillatory potentials, and changes in latency and amplitude of the 30Hz response. However, many of these changes such as the Arden Index, oscillatory potentials, latency and amplitude of photopic b wave appear to be related to current anti-epileptic drug treatment rather than visual field defects. Certain parameters, particularly the amplitude of the 30-Hz flicker response, do appear to correlate with the severity of the field defect. Paediatric patients treated with the drug at age 9 years or below cannot reliably perform visual field perimetry. To identify these patients a special VEP H-Stimulus has been developed to produce separate responses from central and peripheral field stimulation by alternating at slightly separate rates. Forty-five healthy children between ages 3 and 10 years have been used to develop a normal database. This technique has a sensitivity of 75% and a specificity of 87.5% in identifying the field defect and may be used in children with epilepsy from age 3 upwards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eke T, Talbot J, Lawden MC. Severe persistent visual field constriction associated with vigabatrin. Br Med J 1997; 314: 180–181.

    Google Scholar 

  2. Faeda MT, Giallonardo, AT, Marchetti A, Manfredi M. Vigabatrin therapy for resistant partial epilepsies. Neuropsicofarmace 1993; 15: 105–108.

    Google Scholar 

  3. Harding GFA. Severe persistent visual field constriction associated with vigabatrin. Four possible mechanisms exist. Br Med J 1997; 314: 1694.

    Google Scholar 

  4. Krauss GL, Johnson MA, Miller NR. Vigabatrin-associated retinal cone system dysfunction. Electroretinogram and ophthalmologic findings. Neurology 1998; 50: 814–819.

    Google Scholar 

  5. Arndt CF, Derambure P, Defoort-Dhellemmes S, Hache JC. Outer retinal dysfunction in patients treated with vigabatrin. Neurology 1999; 52: 1201–1205.

    Google Scholar 

  6. Daneshvar H, Racette L, Coupland SG, Kertes PJ, Guberman A, Zakon D. Symptomatic and asymptomatic visual loss in patients taking vigabatrin. Ophthalmology 1999; 106: 1792–1798.

    Google Scholar 

  7. Kalvianien R, Nousiainen I, Mantyjarvi M, Nikoskelainen E, Partanen J, Partanen K, Riekkinen P. Vigabatrin, a gabaergic antiepileptic drug, causes concentric visual field constriction. Neurology 1999; 53: 922–926.

    Google Scholar 

  8. Lawden MC, Eke T, Degg C, Harding GFA, Wild JM. Visual field defects associated with vigabatrin therapy. J Neurol, Neurosurg Psychiatry 1999; 67: 716–722.

    Google Scholar 

  9. Wild JM, Martinez C, Reinshagen G, Harding GFA. Characteristics of a unique visual field defect attributed to vigabatrin. Epilepsia 1999; 40: 1784–1794.

    Google Scholar 

  10. Miller NR, Johnson MA, Paul SR, Girkin CA, Perry JD, Endres M, Krauss GL Visual dysfunction in patients receiving vigabatrin. Clinical and electrophysiological findings. Neurology 1999; 53: 2082–2087.

    Google Scholar 

  11. Catherine Chiron, Olivier Dulac, Daniel Beaumont, Leonardo Palacios, Nicole Pajot, John Mumford. Therapeutic Trial of Vigabatrin in Refractory Infantile Spasms. J. Child Neurol. 1991; 6(Suppl. 2): 2S52–2S59.

    Google Scholar 

  12. Browne TR, Mattson RH, Penry JK, Smith DB, Treiman DM, Wilder BJ, Ben-Menachchem E, Miketta RM, Sherry KM, Szabo GK. A multicentre study of vigabatrin for drug resistant epilepsy. Br J Clin Pharmacal 1989; 27: 95s–100s.

    Google Scholar 

  13. Hammond EJ, Rangel RJ, Wilder BJ. Evoked potential monitoring of vigabatrin patients. Br J Clin Pract 1989; 61; 16–23.

    Google Scholar 

  14. Cosi V, Callieco R, Galimberti CA, Manni R, Tartara A, Mumford JP, Perucca E. Effects of vigabatrin on evoked potentials in epileptic patients. Br J Clin Pharmacal 1989; 27: 61S–68S.

    Google Scholar 

  15. Liegeois-Chauvel C, Marquis P, Gisselbrecht D, Pantieri R, Beaumont D, Chauvel P. Effects of long-term vigabatrin on somatosensory-evoked potentials in epileptic patients. Epilepsia 1989; 30; S23–S25.

    Google Scholar 

  16. Harding GFA, Jones LA, Tipper VJ, Betts TA, Mumford JP. Electro-retinogram, pattern electroretinogram and visual evoked potential assessment in patients receiving vigabatrin. Epilepsia 1995a; 36: S108.

    Google Scholar 

  17. Mauguière F, Chauvel P, Dewailly J, Dousse N. No Effect of long-term vigabatrin treatment on CNS conduction in epileptic patients: results of a multicenter study of somatosensory and visual evoked potentials. Epilepsia 1995; 36: 29.

    Google Scholar 

  18. Cannon DJ, Butler WH, Mumford JP, Lewis PJ. Neuropathologic findings in patients receiving long-term vigabatrin therapy for chronic intractable epilepsy. J Child Neurol 1991; 6: 2S17–2S24.

    Google Scholar 

  19. Bayer A, Zrenner E, Ried S and Schmidt D. Effects of anticonvulsant drugs on retinal function. Psychophysical and electrophysicological findings in patients with epilepsy. Invest Ophthalmol Vis Sci 1990; 31(4); 427.

    Google Scholar 

  20. Duckett T, Brigell MG, Ruckh S. Electroretinographic changes are not associated with loss of visual function in paediatric patients following treatment with vigabatrin. Invest. Ophthalmol. Vis. Sci. 1998; 39: S973.

    Google Scholar 

  21. Ruether K, Pung T, Kellner U, Schmitz B, Hartmann C, Seeliger M. Electrophysiologic evaluation of a patient with peripheral visual field contraction associated with vigabatrin. Arch Ophthalmol 1998; 116: 817–819.

    Google Scholar 

  22. Harding GFA, Wild JM, Robertson KA, Rietbrock S, Martinez C. Separating the Retinal Electrophysiologic Effects of Vigabatrin - Treatment Versus Field Loss. Neurology 2000; 55(3): 347–352.

    Google Scholar 

  23. Harding GFA, Wild JM, Robertson K, Lawden MC, Betts TA, Barber C and Barnes PMF. EOGs, ERGs, VEPs and Multifocal ERGs in Epileptic Patients Showing Visual Field Constriction. Epilepsia 2000; 41(11): 1420–1431.

    Google Scholar 

  24. Harding GFA, Robertson KA, Edson AS, Barnes P, Wild JM. Visual electrophysiological effect of a GABA transaminase blocker. Doc Ophthalmol 1999; 97: 179–188.

    Google Scholar 

  25. Marmor MF, Holder GE, Porciatti V, Trick GL, Zrenner E. Guidelines for basic pattern electroretinography. Doc Ophthalmol 1996; 91: 291–298.

    Google Scholar 

  26. Bariel FB, Delplace MP, De Toffol B, Majzoub F, Rossazza C. Electrophysiologic evaluation of visual disturbances associated with vigabatrin. Invest. Ophthalmol Vis Sci 1999; 40(4): 91B51.

    Google Scholar 

  27. Appleton RE. Guideline may help in prescribing vigabatrin. Br Med J 1999; 319: 1167.

    Google Scholar 

  28. Harding GFA, Robertson K, Holliday I, Jones L. Field-specific visual evoked potentials for assessment of peripheral field defect in a paediatric population. J Physiol 1999; 518P: 171P.

    Google Scholar 

  29. Halliday AM, Barrett G, Blumhardt LD, Kriss A. The macular and paramacular subcomponents of the pattern evoked response in human evoked potentials. Lehmann D, Callaway E, eds. New York: Plenum 1979; 135–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harding, G., Robertson, K., Spencer, E. et al. Vigabatrin; its effect on the electrophysiology of vision. Doc Ophthalmol 104, 213–229 (2002). https://doi.org/10.1023/A:1014643528474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014643528474

Navigation