Skip to main content
Log in

Lattice-Boltzmann Simulation of Capillary Rise Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We report results of extensive two-phase lattice-Boltzmann simulations of capillary rise dynamics. We demonstrate that the method can be used to model the hydrodynamic behaviour inside a capillary tube provided that the diameter of the tube is large enough, typically at least 30 lattice units. We also present results for the dependence of the cosine of the dynamic contact angle on the capillary number Ca. Its deviation from the static advancing contact angle has a power-law form, with the value of the exponent very close to 3/2 for capillary rise at zero gravity, while behaviour is more complex in the presence of gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison-Wesley, Reading, 1994).

    Google Scholar 

  2. L. H. Tanner, J. Phys. D: Appl. Phys. 12:1473 (1979).

    Google Scholar 

  3. M. Pasandideh-fard, Y. M. Qiao, S. Chandra, and J. Mostaghimi, Phys. Fluids 8:650 (1996).

    Google Scholar 

  4. T. Mao, D. C. S. Kuhn, and H. Tran, J. of Pulp and Paper Sci. 23:J565 (1997).

    Google Scholar 

  5. C. Trevino, F. Mendez, and C. Ferro-Fontan, Phys. Rev. E 58:4473 (1998).

    Google Scholar 

  6. S. Betelu, B. M. Law, and C. C. Huang, Phys. Rev. E 59:6699 (1999).

    Google Scholar 

  7. For a recent overview and references, see M. Dube, M. Rost, and M. Alava, Eur. Phys. J. B 15:691 (2000).

    Google Scholar 

  8. D. H. Rothman and S. Zaleski, Lattice-Gas Cellular Automata (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  9. D. H. Rothman, J. Geophysical Research 95:8663 (1990).

    Google Scholar 

  10. V. Pot, C. Appert, A. Melayah, D. H. Rothman, and S. Zaleski, J. Phys. II France 6:1517 (1996).

    Google Scholar 

  11. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, Complex Syst. 1:649 (1987).

    Google Scholar 

  12. S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech. 30:329 (1998).

    Google Scholar 

  13. G. McNamara and G. Zanetti, Phys. Rev. Lett. 61:2332 (1988).

    Google Scholar 

  14. Y. H. Qian, D. d'Humières, and P. Lallemand, Europhys. Lett. 17:479 (1992).

    Google Scholar 

  15. A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti, Phys. Rev. A 43:4320 (1991).

    Google Scholar 

  16. A. K. Gunstensen and D. H. Rothman, Europhys. Lett. 18:157 (1992).

    Google Scholar 

  17. N. S. Martys and H. Chen, Phys. Rev. E 53:743 (1996).

    Google Scholar 

  18. X. Shan and H. Chen, Phys. Rev. E 47:1815 (1993).

    Google Scholar 

  19. X. Shan and H. Chen, Phys. Rev. E 49:2941 (1994).

    Google Scholar 

  20. E. Orlandini, M. R. Swift, and J. M. Yeomans, Europhys. Lett. 32:463 (1995).

    Google Scholar 

  21. M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans, Phys. Rev. E 54:5041 (1996).

    Google Scholar 

  22. G. Gonnella, E. Orlandini, and J. M. Yeomans, Phys. Rev. E 58:480 (1998).

    Google Scholar 

  23. A. J. C. Ladd, J. Fluid. Mech. 271, 285 (1994); ibid. 271, 311 (1994); A. J. C. Ladd and R. Verberg, J. Statist. Phys. 104, 1191 (2001).

    Google Scholar 

  24. A. Koponen, D. Kandhai, E. Hellén, M. Alava, A. Hoekstra, M. Kataja, K. Niskanen, P. Sloot, and J. Timonen, Phys. Rev. Lett. 80:716 (1998).

    Google Scholar 

  25. B. Ferrèol and D. H. Rothman, Transport in Porous Media 20:3 (1995).

    Google Scholar 

  26. P. Raiskinmäki, A. Koponen, J. Merikoski, and J. Timonen, Comp. Mat. Sci. 18:7 (2000).

    Google Scholar 

  27. E. W. Washburn, Phys. Rev. 17:273 (1921).

    Google Scholar 

  28. F. M. White, Fluid Mechanics (McGraw-Hill, New York, 1994).

    Google Scholar 

  29. E. Schäffer, and P. Wong, Phys. Rev. E 61:5257 (2000).

    Google Scholar 

  30. E. B. Dussan, Ann. Rev. Fluid Mech. 11:371 (1979).

    Google Scholar 

  31. D. Ertas, and M. Kardar, Phys. Rev. E 49:R2532 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Raiskinmäki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raiskinmäki, P., Shakib-Manesh, A., Jäsberg, A. et al. Lattice-Boltzmann Simulation of Capillary Rise Dynamics. Journal of Statistical Physics 107, 143–158 (2002). https://doi.org/10.1023/A:1014506503793

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014506503793

Navigation