Skip to main content
Log in

Retinal diseases linked with photoreceptor guanylate cyclase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Inherited retinal dystrophies are the main causes of progressive visual impairment often leading to blindness. They represent a clinically and genetically heterogenous group of disorders. Continuously increasing body of evidence links retinal dystrophies to mutations in numerous genes. These genes code for retinal proteins of various function (phototransduction, visual cycle, transcription factors, structural and metabolic functions). Mutations in the gene coding for photoreceptor specific guanylate cyclase type 1, ROS-GC1, were found to be the cause for the type 1 Leber's congenital amaurosis (LCA1) and cone-rod dystrophy type 6 (CORD6). The LCA1-linked mutations are distributed over almost the entire ROS-GC1 coding sequence but the CORD6-linked mutations are restricted to three positions, E786, R787 and T788, located within the putative ROS-GC1 dimerization domain. A linkage between the biochemical effect of the mutation and its phenotypic manifestation was provided for only one LCA1 mutation, F514S. This was followed by biochemical analyses of the consequences of the CORD6-causing mutations. Here, an overview on the existing results and a discussion of the possible physiological implications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berson EL: Retinitis pigmentosa. Invest Ophthalmol Vis Sci 34: 1659–1676, 1993

    Google Scholar 

  2. Dryja TP, Berson EL: Retinitis pigmentosa and allied diseases. Invest Ophthal Vis Sci 36: 1197–1200, 1995

    Google Scholar 

  3. Fulton AB, Breton ME: Clinical physiology of heritable photoreceptor diseases. Arch Ophthalmol 111: 1479–1480, 1993

    Google Scholar 

  4. Dryja TP, McGee TL, Reichel E, Han LA, Cowley GS, Yandell DW, Sandberg MA, Berson EL: A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343: 364–366, 1990

    Google Scholar 

  5. Shastry BS: Retinitis pigmentosa and related disorders: Phenotypes of rhodopsin and peripherin/RDS mutations. Am J Med Genet 52: 467–474, 1994

    Google Scholar 

  6. Macke JP, Davenport CM, Jacobson SG, Hennessey JC, Gonzalez-Fernandez F, Conway BP, Heckenlively J, Palmer R, Maumenee IH, Sieving P: Identification of novel rhodopsin mutations responsible for retinitis pigmentosa: Implications for the structure and function of rhodopsin. Am J Hum Genet 53: 80–89, 1993

    Google Scholar 

  7. Huang SH, Pittler SJ, Huang X, Oliveira L, Berson EL, Dryja TP: Autosomal recessive retinitis pigmentosa caused by mutations in the alpha subunit of rod cGMP phosphodiesterase. Nat Genet 11: 468–471, 1995

    Google Scholar 

  8. McLaughlin ME, Sandberg MA, Berson EL, Dryja TP: Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet 4: 130–134, 1993

    Google Scholar 

  9. Dancinger M, Blaney J, Gao UQ, Zhao DY, Heckenlively JR, Jacobson SG, Farber DB: Mutations in the PDE6B gene in autosomal recessive retinitis pigmentosa. Genomics 30: 1–7, 1995

    Google Scholar 

  10. McLaughlin ME, Ehrhart TL, Berson EL, Dryja TP: Mutation spectrum of the gene encoding beta subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa. Proc Natl Acad Sci USA 92: 3249–3253, 1995

    Google Scholar 

  11. Dryja TP, Finn JT, Peng YW, McGee TL, Berson EL, Yau KW: Mutations in the gene encoding alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc Natl Acad Sci USA 92: 10177–10181, 1995

    Google Scholar 

  12. Nakamachi Y, Nakamura M, Fujii S, Yamamoto M, Okubo K: Oguchi disease with sectoral retinitis pigmentosa harboring adenine deletion at position 1147 in the arrestin gene. Am J Ophthalmol 125: 249–251, 1998

    Google Scholar 

  13. Nakazawa M, Wada Y, Tamai M: Arrestin gene mutations in autosomal recessive retinitis pigmentosa. Arch Ophthalmol 116: 498–501, 1998

    Google Scholar 

  14. Yoshii M, Murakami A, Akeo K, Nakamura A, Shimoyama M, Ikeda Y, Kikuchi Y, Okisaka S, Yanashima K, Oguchi Y: Visual function and gene analysis in a family with Oguchi's disease. Ophthalmic Res 30: 394–401, 1998

    Google Scholar 

  15. Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP: Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. Proc Natl Acad Sci USA 95: 3088–3093, 1998

    Google Scholar 

  16. Maw MA, Kennedy B, Knight A, Bridges R, Roth KE, Mani EJ, Mukkadan JK, Nancarrow D, Crabb JW, Denton MJ: Mutation in the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet 17: 198–200, 1997

    Google Scholar 

  17. Martinez-Mir A, Paloma E, Allikmets R, Ayuso C, del Rio T, Dean M, Vilageliu L, Gonzales-Duarte R, Bacells S: Retinitis pigmentosa caused by a homozygogous mutation in the Stargardt disease gene ABCR. Nat Genet 18: 11–12, 1998

    Google Scholar 

  18. Cremers FP, van der Pol DJ, van Driel M, den Hollander AI, van Haren FJ, Knoers NV, Tijmes N, Bergen AA, Rohrschneider K, Blankenagel A, Pinckers AJ, Deutman AF, Hoyng CB: Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR. Hum Mol Genet 7: 355–356, 1998

    Google Scholar 

  19. Sohocki MM, Sullivan LS, Mintz-Hittner HA, Birch D, Heckenlively JR, Freund CL, McInnes RR, Daiger SP: A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcriptionfactor gene. Am J Hum Genet 63: 1307–1315, 1998

    Google Scholar 

  20. Bessant DA, Payne AM, Mitton KP, Wang QL, Swain PK, Plant C, Bird AC, Zack DJ, Swaroop A, Bhattacharya SS: A mutation in NRL is associated with autosomal dominant retinitis pigmentosa. Nat Genet 21: 355–356, 1999

    Google Scholar 

  21. Kajiwara K, Berson EL, Dryja TP: Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264: 1604–1608, 1994

    Google Scholar 

  22. Dryja TP, Hahn LB, Kajiwara K, Berson EL: Dominant and digenic mutations in the peripherin/RDS and ROM1 genes in retinitis pigmentosa. Invest Ophthalmol Vis Sci 38: 1972–1982, 1997

    Google Scholar 

  23. Bascom RA, Liu L, Heckenlively JR, Stone EM, McInnes RR: Mutation analysis of the ROM1 gene in retinitis pigmentosa. Hum Mol Genet 4: 1895–1902, 1995

    Google Scholar 

  24. Sakuma H, Inana G, Murakami A, Yajima T, Weleber T, Murphey WH, Gass JD, Hayakawa M, Fujiki K: A heterozygous putative null mutation in ROM1 without a mutation in peripherin/RDS in a family with retinitis pigmentosa. Genomics 27: 384–386, 1995

    Google Scholar 

  25. Shroyer NF, Lewis RA, Allikmets R, Singh N, Dean M, Leppert M, Lupski JR: The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: From monogenic to multifactorial. Vision Res 39: 2537–2544, 1999

    Google Scholar 

  26. Grieshaber MC, Niemeyer G: Leber congenital amaurosis: Diagnosis, follow-up and differential diagnosis. Klin Monatsbl Augenheilkd 212: 309–310, 1998

    Google Scholar 

  27. Weber BH: Recent advances in the molecular genetics of hereditary retinal dystrophies with primary involvement of the macula. Acta Anat 162: 65–74, 1998

    Google Scholar 

  28. Wierzbicki AS, Mitchell J, Lambert-Hammill M, Hancock M, Greenwood J, Sidey MC, de Belleroche J, Gibberd FB: Identification of genetic heterogeneity in Refsum's disease. Eur J Hum Genet 8: 649–651, 2000

    Google Scholar 

  29. Perrault I, Rozet JM, Calvas P, Gerber S, Camuzat A, Dollfus H, Chatelin S, Souied E, Ghazi I, Leowski C, Bonnemaison M, Le Paslier D, Frezal J, Dufier JL, Pittler S, Munnich A, Kaplan J: Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis. Nat Genet 14: 461–464, 1996

    Google Scholar 

  30. Perrault I, Rozet JM, Gerber S, Ghazi I, Duroc D, Souied E, Leowski C, Bonnemaison M, Dufier JL, Munnich A, Kaplan J: Spectrum of retGC1 mutations in Leber's congenital amaurosis. Eur J Hum Genet 8: 578–582, 2000

    Google Scholar 

  31. Kelsell RE, Gregory-Evans K, Payne AM, Perrault I, Kaplan J, Yang RB, Garbers DL, Bird AC, Moore AT, Hunt DM: Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 7: 1179–1184, 1998

    Google Scholar 

  32. Perrault I, Rozet JM, Gerber S, Kelsell RE, Souied E, Cabot A, Hunt DM, Munnich A, Kaplan J: A retGC-1 mutation in autosomal dominant conerod dystrophy. Am J Hum Genet 63: 651–654, 1998

    Google Scholar 

  33. Gregory-Evans K, Kelsell RE, Gregory-Evans CY, Downes SM, Fitzke FW, Holder GE, Simunovic M, Mollon JD, Taylor R, Hunt DM, Bird AC, Moore AT: Autosomal dominant cone-rod retinal dystrophy (CORD6) from heterozygous mutation of GUCY2D, which encodes retinal guanylate cyclase. Ophthalmology 107: 55–61, 2000

    Google Scholar 

  34. Weigell-Weber M, Fokusten S, Torok B, Niemeyer G, Schnizel A, Hergersberg M: Codons 837 and 838 in the retinal guanylate cyclase gene on chromosome 17p: Hot spots for mutations in autosomal dominant cone-rod dystrophy. Arch Ophthalmol 118: 300, 2000

    Google Scholar 

  35. Kohl S, Marx T, Giddings I, Jagle H, Jacobson SG, Apfelstedt-Sylla E, Zrenner E, Sharpe LT, Wissinger B: Total colour blindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nat Genet 19: 257–259, 1998

    Google Scholar 

  36. Kohl S, Baumann B, Broghammer M, Jagle H, Sieving P, Kellner U, Spegal R, Anastasi M, Zrenner E, Sharpe LT, Wissinger B: Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum Mol Genet 9: 2107–2116, 2000

    Google Scholar 

  37. Gorczyca WA, Gray-Keller MP, Detwiler PB, Palczewski K: Purification and physiological evaluation of a guanylate cyclase activating protein from retinal rods. Proc Natl Acad Sci USA 91: 4014–4018, 1994

    Google Scholar 

  38. Gorczyca WA, Polans AS, Surgucheva IG, Subbaraya I, Baehr W, Palczewski K: Guanylate cyclase activating protein. A calcium-sensitive regulator of phototransduction. J Biol Chem 270: 22029–22036, 1995

    Google Scholar 

  39. Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, Huang J, Zhao X, Crabb JW, Johnson RS: Molecular cloning and characterization of retinal photoreceptor guanylyl cyclaseactivating protein. Neuron 13: 395–404, 1994

    Google Scholar 

  40. Frins S, Bonigk W, Muller F, Kellner R, Koch K-W: Functional characterization of a guanylate cyclase-activating protein from vertebrate rods. Cloning, heterologous expression, and localization. J Biol Chem 271: 8022–8027, 1996

    Google Scholar 

  41. Dizhoor AM, Lowe DG, Olshevskaya EV, Laura RP, Hurley JB: The human photoreceptor membrane guanylate cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 12: 1345–1352, 1994

    Google Scholar 

  42. Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, Hurley JB: Cloning, sequencing, and expression of a 24-kDa Ca2+-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 270: 25200–25206, 1995

    Google Scholar 

  43. Haeseleer F, Sokal I, Li N, Pettenati M, Rao N, Bronson D, Wechter R, Baehr W, Palczewski K: Molecular characterization of a third member of the guanylyl cyclase-activating protein subfamily. J Biol Chem 274: 6526–6535, 1999

    Google Scholar 

  44. Duda T, Goraczniak R, Rudnicka-Nawrot M, Surguheva IG, Gorczyca WA, Sitaramayya A, Palczewski K, Baehr W, Sharma RK: Calcium modulation of bovine photoreceptor guanylate cyclase. Biochemistry 35: 8478–8482, 1996

    Google Scholar 

  45. Krishnan A, Goraczniak R, Duda T, Sharma RK: Third calcium-modulated rod outer segment membrane guanylate cyclase transduction mechanism. Mol Cell Biochem 178: 251–259, 1998

    Google Scholar 

  46. Payne AM, Downes SM, Bessant DA, Taylor R, Holder GE: A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet 7: 273–277, 1998

    Google Scholar 

  47. Newbold RJ, Deery EC, Walker CE, Wilkie SE, Srinivasan N, Hunt DM, Bhattacharya SS, Warren MJ: The destabilization of human GCAP1 by proline to leucine mutation might cause cone-rod dystrophy. Hum Mol Genet 10: 47–54, 2001

    Google Scholar 

  48. Perrault I, Rozet JM, Gerber S, Ghazi I, Leowski C, Ducroq D, Souied E, Difier JL, Munnich A, Kaplan J: Leber congenital amaurosis. Minireview. Mol Genet Metabol 68: 200–208, 1999

    Google Scholar 

  49. Sohocki MM, Bowne SJ, Sullivan LS, Blackshaw S, Cepko CL, Payne AM, Bhattacharya SS, Khaliq S, Qasim Mehdi S, Birch DG, Harrison WR, Elder FF, Heckenlively JR, Daiger SP: Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. Nat Genet 24: 79–83, 2000

    Google Scholar 

  50. Camuzat A, Dollfus H, Rozet JM, Gerber S, Bonneau D, Bonnemaison M, Briard ML, Dufier JL, Ghazi I, Leowski C, Weissenbach J, Frezal J, Munnich A, Kaplan J: A gene for leber congenital amaurosis maps to chromosome 17p. Hum Mol Genet 8: 1447–1452, 1995

    Google Scholar 

  51. Yang RB, Fulle HJ, Garbers DL: Chromosomal localization and genomic organization of genes encoding guanylyl cyclase receptors expressed in olfactory sensory neurons and retina. Genomics 31: 367–372, 1995

    Google Scholar 

  52. Johnston JP, Farhangfar F, Aparicio JG, Nam SH, Applebury ML: The bovine guanylate cyclase GC-E gene and 5' flanking region. Gene 193: 219–227, 1997

    Google Scholar 

  53. Duda T, Venkataraman V, Krishnan A, Sharma RK: Rod outer segment membrane guanylate cyclase type 1 (ROS-GC1) gene: Structure, organization and regulation by phorbol ester, a protein kinase C activator. Mol Cell Biochem 189: 63–70, 1998

    Google Scholar 

  54. Dollfus H, Rozet JM, Delrieu O, Vignal A, Ghazi I, Dufier JL, Mattei MG, Weissenbach J, Frezal J, Kaplan J, Munnich A: Clinical and genetic heterogeneity of Leber congenital amaurosis. In: J.G. Hollyfield et al. (eds), Retinal Degeneration. Plenum Press, New York, pp 143–152, 1993

    Google Scholar 

  55. Nakazawa M, Naoi N, Wada Y, Nakazaki S, Maruiwa F, Sawada A, Tamai M: Autosomal dominant cone-rod dystrophy associated with a Val200Glu mutation of the peripherin/rds gene. Retina 16: 405–410, 1996

    Google Scholar 

  56. Nakazawa M, Kikawa E, Chida Y, Wada Y, Shiono T, Tamai M: Autosomal dominant cone-rod dystrophy associated with mutations in codon 244 (Asn244His) and codon 184 (Tyr184Ser) of the peripherin/rds gene. Arch Ophthalmol 114: 72–78, 1996

    Google Scholar 

  57. Jacobson SG, Cideciyan AV, Kemp CM, Sheffield VC, Stone EM: Photoreceptor function in heterozygotes with insertion or deletion mutations in the RDS gene. Invest Ophthalmol Vis Sci 37: 1662–1674, 1996

    Google Scholar 

  58. Warburg M, Sjo O, Tranebjaerg L, Fledelius HC: Deletion mapping of a retinal cone-rod dystrophy: Assignment to 18q211. Am J Med Genet 39: 288–293, 1991

    Google Scholar 

  59. Freund CL, Gregory-Evans CY, Furukawa T, Papaioannou M, Looser J, Ploder L, Bellingham J, Ng D, Herbrick JA, Duncan A, Scherer SW, Tsui LC, Loutradis-Anagnostou A, Jacobson SG, Cepko CL, Bhattacharya SS, McInnes RR: Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 91: 543–553, 1997

    Google Scholar 

  60. Lange C, Duda T, Beyerman M, Sharma RK, Koch K-W: Regions in vertebrate photoreceptor guanylyl cyclase ROS-GC1 involved in Ca(2+)-dependent regulation by guanylyl cyclase-activating protein GCAP-1. FEBS Lett 460: 27–31, 1999

    Google Scholar 

  61. Sokal I, Haeseleer F, Arendt A, Adman ET, Hargrave PA, Palczewski K: Identification of a guanylyl cyclase-activating protein-binding site within the catalytic domain of retinal guanylyl cyclase 1. Biochemistry 38: 1387–1393, 1999

    Google Scholar 

  62. Pozdnyakov N, Yoshida A, Cooper NFG, Margulis A, Duda T, Sharma RK, Sitaramayya A: A novel calcium-dependent activator of retinal rod outer segment guanylate cyclase. Biochemistry 34: 14279–14283, 1995

    Google Scholar 

  63. Cooper NGF, Liu L, Yoshida A, Pozdnyakov N, Margulis A, Sitaramayya A: The bovine rod outer segment guanylate cyclase, ROS-GC, is present in both outer segment and synaptic layers of the retina. J Mol Neurosci 6: 211–222, 1995

    Google Scholar 

  64. Duda T, Goraczniak R, Sharma RK: Molecular characterization of S100A1-S100B protein in retina and its activation mechanism of bovine photoreceptor guanylate cyclase. Biochemistry 35: 6263–6266, 1996

    Google Scholar 

  65. Margulis A, Pozdnyakov N, Sitaramayya A: Activation of bovine photoreceptor guanylate cyclase by S100 proteins. Biochem Biophys Res Commun 194: 855–861, 1996

    Google Scholar 

  66. Pozdnyakov N, Goraczniak R, Margulis A, Duda T, Sharma RK, Yoshida A, Sitaramayya A: Biochemistry 36: 14159–14166, 1997

    Google Scholar 

  67. Duda T, Goraczniak R, Pozdnyakov N, Sitaramayya A, Sharma RK: Differential activation of rod outer segment membrane guanylate cyclases, ROS-GC1 and ROS-GC2, by CD-GCAP and identification of the signaling domain. Biochem Biophys Res Commun 242: 118–122, 1998

    Google Scholar 

  68. Rambotti MG, Giambanco I, Spreca A, Donato R: S100B and S100A1 proteins in bovine retina: Their calcium-dependent stimulation of a membrane-bound guanylate cyclase activity as investigated by ultracytochemistry. Neuroscience 92:1089–1101, 1999

    Google Scholar 

  69. Kumar V, Senadhi V-K, Krishnan A, Duda T, Sharma RK: A second regulator of rod outer segment membrane guanylate cyclase: Neurocalcin. Biochemistry 38: 12614–12620, 1999

    Google Scholar 

  70. Hao Y, Olshevskaya EV, Duda T, Seno K, Hayashi F, Sharma RK, Dizhoor AM, Yamazaki A: J Biol Chem 274: 15547–15555, 1999

    Google Scholar 

  71. Yang RB, Garbers DL: Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem 272: 13738–13742, 1997

    Google Scholar 

  72. Olshevskaya EV, Ermilov AN, Dizhoor AM: Dimerization of guanylyl cyclase-activating protein and a mechanism of photoreceptor guanylyl cyclase activation. J Biol Chem 274: 25583–25587, 1999

    Google Scholar 

  73. Liu Y, Ruoho AE, Rao VD, Hurley JH: Catalytic mechanism of the adenylyl and guanylyl cyclases: Modeling and mutational analysis. Proc Natl Acad Sci USA 94: 13414–13419, 1997

    Google Scholar 

  74. Duda T, Venkataraman V, Goraczniak R, Lange C, Koch K-W, Sharma RK: Functional consequences of a rod outer segment membrane guanylate cyclase (ROS-GC1) gene mutation linked with Leber's congenital amaurosis. Biochemistry 38: 509–515, 1999

    Google Scholar 

  75. Duda T, Krishnan A, Venkataraman V, Lange C, Koch K-W, Sharma RK: Mutations in the rod outer segment membrane guanylate cyclase in a cone-rod dystrophy cause defects in calcium signaling. Biochemistry 38: 13912–13919, 1999

    Google Scholar 

  76. Tucker CL, Woodcock SC, Kelsell RE, Ramamurthy V, Hunt DM, Hurley JB: Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy. Proc Natl Acad Sci USA 96: 9039–9044, 1999

    Google Scholar 

  77. Wilkie S, Newbold RJ, Deery E, Walker CE, Stinton I, Ramamurthy V, Hurley JB, Bhattacharya SS, Warren MJ, Hunt DM: Functional characterization of missense mutations at codon 838 in retinal guanylate cyclase correlates with disease severity in patients with autosomal dominant cone-rod dystrophy. Hum Mol Genet 9: 3065–3073, 2000

    Google Scholar 

  78. Gregory-Evans K, Kelsell RE, Gregory-Evans CY, Downes SM, Fitzke FW, Holder GE, Simunovic M, Mollen JD, Taylor R, Hunt DM, Bird AC, Moore AT: Abnormal cone synapses in human cone-rod dystrophy. Ophthalmology 107: 55–61, 2000

    Google Scholar 

  79. Perrault I, Rozet J-M, Gerber S, Kelsell RE, Souied E, Cabot A, Hunt DM, Munnich A, Kaplan J: A ret-GC1 mutation in autosomal dominant cone-rod dystrophy. Am J Hum Genet 63: 651–654, 1998

    Google Scholar 

  80. Duda T, Venkataraman V, Jankowska A, Lange C, Koch K-W, Sharma RK: Impairment of the rod outer segment membrane guanylate cyclase dimerization in a cone-rod dystrophy results in defective calcium signaling. Biochemistry 39: 12522–12533, 2000

    Google Scholar 

  81. Yau KW: Phototransduction mechanism in retinal rods and cones. The Friedenwald Lecture. Vis Sci 35: 9–32, 1994

    Google Scholar 

  82. Pugh EN Jr, Lamb TD: Amplifications and kinetics of the activation steps in phototransduction. Biochem Biophys Acta 1141: 111–149, 1993

    Google Scholar 

  83. Pugh EN Jr, Duda T, Sitaramayya A, Sharma RK: Photoreceptor guanylate cyclases: A review. Biosci Rep 17: 429–473, 1997

    Google Scholar 

  84. Ratto GM, Payne R, Owen WG, Tsien RY: The concentration of cytosolic free calcium in vertebrate rod outer segments measured with fura-2. J Neurosci 8: 3240–3246, 1988

    Google Scholar 

  85. Korenbrot JI, Miller DL: Cytoplasmic free calcium concentration in dark-adapted retinal rod outer segments. Vision Res 29: 939–958, 1989

    Google Scholar 

  86. Lagnado AL, Cervetto L, McNaughton PA: Calcium homeostasis in the outer segments of retinal rods from the tiger salamander. J Physiol 455: 111–142, 1992

    Google Scholar 

  87. Gray-Keller MP, Detwiler PB: Ca2+ dependence of dark-and lightadapted flash responses in rod photoreceptors. Neuron 17: 323–331, 1996

    Google Scholar 

  88. Pugh EN Jr, Nikonov S, Lamb TD: Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr Opin Neurobiol 9: 410–418, 1999

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duda, T., Koch, KW. Retinal diseases linked with photoreceptor guanylate cyclase. Mol Cell Biochem 230, 129–138 (2002). https://doi.org/10.1023/A:1014296124514

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014296124514

Navigation