Skip to main content
Log in

Biochemistry and physiology of the natriuretic peptide receptor guanylyl cyclases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Guanylyl cyclases (GC) exist as soluble and particulate, membrane-associated enzymes which catalyse the conversion of GTP to cGMP, an intracellular signalling molecule. Several membrane forms of the enzyme have been identified up to now. Some of them serve as receptors for the natriuretic peptides, a family of peptides which includes atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP), three peptides known to play important roles in renal and cardiovascular physiology. These are transmembrane proteins composed of a single transmembrane domain, a variable extracellular natriuretic peptide-binding domain, and a more conserved intracellular kinase homology domain (KHD) and catalytic domain. GC-A, the receptor for ANP and BNP, also named natriuretic peptide receptor-A or -1 (NPR-A or NPR-1), has been studied widely. Its mode of activation by peptide ligands and mechanisms of regulation serve as prototypes for understanding the function of other particulate GC. Activation of this enzyme by its ligand is a complex process requiring oligomerization, ligand binding, KHD phosphorylation and ATP binding. Gene knockout and genetic segregation studies have provided strong evidence for the importance of GC-A in the regulation of blood pressure and heart and renal functions. GC-B is the main receptor for CNP, the latter having a more paracrine role at the vascular and venous levels. The structure and regulation of GC-B is similar to that of GC-A. This chapter reviews the structure and roles of GC-A and GC-B in blood pressure regulation and cardiac and renal pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hardman JG, Sutherland EW: Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3',5'-monophosphate from guanosine triphosphate. J Biol Chem 244: 6363–6370, 1969

    Google Scholar 

  2. Schultz G, Bohme E, Munske K: Guanyl cyclase. Determination of enzyme activity. Life Sci 8: 1323–1332, 1969

    Google Scholar 

  3. Garbers DL, Hardman JG, Rudolph FB: Kinetic analysis of sea urchin sperm guanylate cyclase. Biochemistry 13: 4166–4171, 1974

    Google Scholar 

  4. Kimura H, Murad F: Evidence for two different forms of guanylate cyclase in rat heart. J Biol Chem 249: 6910–6916, 1974

    Google Scholar 

  5. Garbers DL, Parks MA, Hardman JG: Characterization of particulate and soluble guanylate cyclases from rat lung. J Biol Chem 250: 374–381, 1975

    Google Scholar 

  6. Ramarao CS, Garbers DL: Receptor-mediated regulation of guanylate cyclase activity in spermatozoa. J Biol Chem 260: 8390–8396, 1985

    Google Scholar 

  7. De Bold AJ, Borenstein HB, Veress AT, Sonnenberg H: A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28: 89–94, 1981

    Google Scholar 

  8. Hamet P, Tremblay J, Thibault G, Garcia R, Cantin M, Genest J: Effect of atrial natriuretic factor on metabolism of cGMP. Endocrinology 112: 289, 1983

    Google Scholar 

  9. Hamet P, Tremblay J, Pang SC, Garcia R, Thibault G, Gutkowska J, Cantin M, Genest J: Effect of native and synthetic atrial natriuretic factor on cyclic GMP. Biochem Biophys Res Commun 123: 515–527, 1984

    Google Scholar 

  10. Waldman SA, Rapoport RM, Murad F: Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem 259: 14332–14334, 1984

    Google Scholar 

  11. Winquist RJ, Faison EP, Waldman SA, Schwartz K, Murad F, Rapoport RM: Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle. Proc Natl Acad Sci USA 81: 7661–7664, 1984

    Google Scholar 

  12. Tremblay J, Gerzer R, Vinay P, Pang SC, Beliveau R, Hamet P: The increase of cGMP by atrial natriuretic factor correlates with the distribution of particulate guanylate cyclase. FEBS Lett 181: 17–22, 1985

    Google Scholar 

  13. Kuno T, Andresen JW, Kamisaki Y, Waldman SA, Chang LY, Saheki S, Leitman DC, Nakane M, Murad F: Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem 261: 5817–5823, 1986

    Google Scholar 

  14. Paul AK, Marala RB, Jaiswal RK, Sharma RK: Coexistence of guanylate cyclase and atrial natriuretic factor receptor in a 180-kD protein. Science 235: 1224–1226, 1987

    Google Scholar 

  15. Meloche S, McNicoll N, Liu B, Ong H, de Lean A: Atrial natriuretic factor R1 receptor from bovine adrenal zona glomerulosa: Purification, characterization, and modulation by amiloride. Biochemistry 27: 8151–8158, 1988

    Google Scholar 

  16. Tremblay J, Gerzer R, Pang SC, Cantin M, Genest J, Hamet P: ANF stimulation of detergent-dispersed particulate guanylate cyclase from bovine adrenal cortex. FEBS Lett 194: 210–214, 1986

    Google Scholar 

  17. Schulz S, Green CK, Yuen PS, Garbers DL: Guanylyl cyclase is a heatstable enterotoxin receptor. Cell 63: 941–948, 1990

    Google Scholar 

  18. Mann EA, Jump ML, Wu J, Yee E, Giannella RA: Mice lacking the guanylyl cyclase C receptor are resistant to STa-induced intestinal secretion. Biochem Biophys Res Commun 239: 463–466, 1997

    Google Scholar 

  19. Fulle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL: A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci USA 92: 3571–3575, 1995

    Google Scholar 

  20. Goraczniak RM, Duda T, Sharma RK: A structural motif that defines the ATP-regulatory module of guanylate cyclase in atrial natriuretic factor signalling. Biochem J 282: 533–537, 1992

    Google Scholar 

  21. Margulis A, Goraczniak RM, Duda T, Sharma RK, Sitaramayya A: Structural and biochemical identity of retinal rod outer segment membrane guanylate cyclase. Biochem Biophys Res Commun 194: 855–861, 1993

    Google Scholar 

  22. Yang RB, Foster DC, Garbers DL, Fulle HJ: Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 92: 602–606, 1995

    Google Scholar 

  23. Schulz S, Wedel BJ, Matthews A, Garbers DL: The cloning and expression of a new guanylyl cyclase orphan receptor. J Biol Chem 273: 1032–1037, 1998

    Google Scholar 

  24. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA: Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52: 375–414, 2000

    Google Scholar 

  25. Kohno M, Ikeda M, Johchi M, Horio T, Yasunari K, Kurihara N, Takeda T: Interaction of PDGF and natriuretic peptides on mesangial cell proliferation and endothelin secretion. Am J Physiol 265: E673–E679, 1993

    Google Scholar 

  26. Itoh H, Pratt RE, Dzau VJ: Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells. J Clin Invest 86: 1690–1697, 1990

    Google Scholar 

  27. Itoh H, Pratt RE, Ohno M, Dzau VJ: Atrial natriuretic polypeptide as a novel antigrowth factor of endothelial cells. Hypertension 19: 758–761, 1992

    Google Scholar 

  28. Cao L, Gardner DG: Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 25: 227–234, 1995

    Google Scholar 

  29. Sudoh T, Kangawa K, Minamino N, Matsuo H: A new natriuretic peptide in porcine brain. Nature 332: 78–81, 1988

    Google Scholar 

  30. Minamino N, Kangawa K, Matsuo H: Isolation and identification of high molecular weight brain natriuretic peptide in porcine cardiac atrium. Biochem Biophys Res Commun 157: 402–409, 1988

    Google Scholar 

  31. Sudoh T, Minamino N, Kangawa K, Matsuo H: C-type natriuretic peptide (CNP): A new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168: 863–870, 1990

    Google Scholar 

  32. Kojima M, Minamino N, Kangawa K, Matsuo H: Cloning and sequence analysis of cDNA encoding a precursor for rat C-type natriuretic peptide (CNP). FEBS Lett 276: 209–213, 1990

    Google Scholar 

  33. Lisy O, Jougasaki M, Heublein DM, Schirger JA, Chen HH, Wennberg PW, Burnett JC: Renal actions of synthetic dendroaspis natriuretic peptide. Kidney Int 56: 502–508, 1999

    Google Scholar 

  34. Inagami T, Misono KS, Fukumi H, Maki M, Tanaka I, Takayanagi R, Imada T, Grammer RT, Naruse M, Naruse K, Pandey KN, Parmentier M, Yasujima M, Abe K: Structure and physiological actions of rat atrial natriuretic factor. Hypertension 10 (suppl I): I113–I117, 1987

    Google Scholar 

  35. Schulz-Knappe P, Honrath U, Forssmann WG, Sonnenberg H: Endogenous natriuretic peptides: Effect on collecting duct function in rat kidney. Am J Physiol 259: F415–F418, 1990

    Google Scholar 

  36. Takayanagi R, Snajdar RM, Imada T, Tamura M, Pandey KN, Misono KS, Inagami T: Purification and characterization of two types of atrial natriuretic factor receptors from bovine adrenal cortex: Guanylate cyclase-linked and cyclase-free receptors. Biochem Biophys Res Commun 144: 244–250, 1987

    Google Scholar 

  37. Lowe DG, Chang MS, Hellmiss R, Chen E, Singh S, Garbers DL, Goeddel DV: Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8: 1377–1384, 1989

    Google Scholar 

  38. Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL: The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58: 1155–1162, 1989

    Google Scholar 

  39. Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV: Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 341: 68–72, 1989

    Google Scholar 

  40. Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV: Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252: 120–123, 1991

    Google Scholar 

  41. Maack T, Suzuki M, Almeida FA, Nussenzveig D, Scarborough RM, McEnroe GA, Lewicki JA: Physiological role of silent receptors of atrial natriuretic factor. Science 238: 675–678, 1987

    Google Scholar 

  42. Anand-Srivastava MB, Franks DJ, Cantin M, Genest J: Atrial natriuretic factor inhibits adenylate cyclase activity. Biochem Biophys Res Commun 121: 855–862, 1984

    Google Scholar 

  43. Hirata M, Chang CH, Murad F: Stimulatory effects of atrial natriuretic factor on phosphoinositide hydrolysis in cultured bovine aortic smooth muscle cells. Biochim Biophys Acta 101: 346–351, 1989

    Google Scholar 

  44. Dubois SK, Kishimoto I, Lillis TO, Garbers DL: A genetic model defines the importance of the atrial natriuretic peptide receptor (guanylyl cyclase-A) in the regulation of kidney function. Proc Natl Acad Sci USA 97: 4369–4373, 2000

    Google Scholar 

  45. Yamaguchi M, Rutledge LJ, Garbers DL: The primary structure of the rat guanylyl cyclase A/atrial natriuretic peptide receptor gene. J Biol Chem 265: 20414–20420, 1990

    Google Scholar 

  46. Gardner DG, Schaufele F, Gardner DG: Sp1 dependence of natriuretic peptide receptor A gene transcription in rat aortic smooth muscle cells. Endocrinology 140: 1695–1701, 1999

    Google Scholar 

  47. Liang F, Schaufele F, Gardner DG: Functional interaction of NF-Y and Sp1 is required for type a natriuretic peptide receptor gene transcription. J Biol Chem 276: 1516–1522, 2001

    Google Scholar 

  48. Cao L, Wu J, Gardner DG: Atrial natriuretic peptide suppresses the transcription of its guanylyl cyclase-linked receptor. J Biol Chem 270: 24891–24897, 1995

    Google Scholar 

  49. Cao L, Chen SC, Humphreys MH, Gardner DG: Ligand-dependent regulation of NPR-A gene expression in inner medullary collecting duct cells. Am J Physiol 275: F119–F125, 1998

    Google Scholar 

  50. Kumar R, Grammatikakis N, Chinkers M: Regulation of the atrial natriuretic peptide receptor by heat shock protein 90 complexes. J Biol Chem 276: 11371–11375, 2001

    Google Scholar 

  51. Chinkers M, Garbers DL: The protein kinase domain of the ANP receptor is required for signaling. Science 245: 1392–1394, 1989

    Google Scholar 

  52. Hasegawa M, Hidaka Y, Wada A, Hirayama T, Shimonishi Y: The relevance of N-linked glycosylation to the binding of a ligand to guanylate cyclase C. Eur J Biochem 263: 338–346, 1999

    Google Scholar 

  53. Lowe DG, Fendly BM: Human natriuretic peptide receptor-A guanylyl cyclase. J Biol Chem 267: 21691–21697, 1992

    Google Scholar 

  54. Tremblay J, Huot C, Koch C, Potier M: Characterization of the functional domains of the natriuretic peptide receptor/guanylate cyclase by radiation inactivation. J Biol Chem 266: 8171–8175, 1991

    Google Scholar 

  55. Iwata T, Uchida-Mizuno K, Katafuchi T, Ito T, Hagiwara H, Hirose S: Bifunctional atrial natriuretic peptide receptor (type A) exists as a disulfide-linked tetramer in plasma membranes of bovine adrenal cortex. J Biochem (Tokyo) 110: 35–39, 1991

    Google Scholar 

  56. Chinkers M, Wilson EM: Ligand-independent oligomerization of natriuretic peptide receptors. J Biol Chem 267: 18589–18597, 1992

    Google Scholar 

  57. Lowe DG: Human natriuretic peptide receptor-A guanylyl cyclase is self-associated prior to hormone binding. Biochemistry 31: 10421–10425, 1992

    Google Scholar 

  58. Huo X, Abe T, Misono KS: Ligand binding-dependent limited proteolysis of the atrial natriuretic peptide receptor: Juxtamembrane hinge structure essential for transmembrane signal transduction. Biochemistry 38: 16941–16951, 1999

    Google Scholar 

  59. Potter LR, Hunter T: Identification and characterization of the phosphorylation sites of the guanylyl cyclase-linked natriuretic peptide receptors A and B. Methods 19: 506–520, 1999

    Google Scholar 

  60. Potter LR, Hunter T: A constitutively ‘phosphorylated’ guanylyl cyclase-linked atrial natriuretic peptide receptor mutant is resistant to desensitization. Mol Biol Cell 10: 1811–1820, 1999

    Google Scholar 

  61. Kurose H, Inagami T, Ui M: Participation of adenosine 5'-triphosphate in the activation of membrane-bound guanylate cyclase by the atrial natriuretic factor. FEBS Lett 219: 375–379, 1987

    Google Scholar 

  62. Chang CH, Jiang B, Douglas JG: Structural requirements of ATP for activation of basal and atrial natriuretic factor-stimulated guanylate cyclase in rat lung membranes. Eur J Pharmacol 189: 293–298, 1990

    Google Scholar 

  63. Gazzano H, Wu HI, Waldman SA: Adenine nucleotide regulation of particulate guanylate cyclase from rat lung. Biochim Biophys Acta 1077: 99–106, 1991

    Google Scholar 

  64. Chinkers M, Singh S, Garbers DL: Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J Biol Chem 266: 4088–4093, 1991

    Google Scholar 

  65. Larose L, McNicoll N, Ong H, de Lean A: Allosteric modulation by ATP of the bovine adrenal natriuretic factor R1 receptor functions. Biochemistry 30: 8990–8995, 1991

    Google Scholar 

  66. Wong SK, Ma CP, Foster DC, Chen AY, Garbers DL: The guanylyl cyclase-A receptor transduces an atrial natriuretic peptide/ATP activation signal in the absence of other proteins. J Biol Chem 270: 30818–30822, 1995

    Google Scholar 

  67. Koller KJ, de Sauvage FJ, Lowe DG, Goeddel DV: Conservation of the kinase like regulatory domain is essential for activation of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biol 12: 2581–2590, 1992

    Google Scholar 

  68. Marala R, Duda T, Goraczniak RM, Sharma RK: Genetically tailored atrial natriuretic factor-dependent guanylate cyclase. Immunological and functional identity with 180 kDa membrane guanylate cyclase and ATP signaling site. FEBS Lett 296: 254–258, 1992

    Google Scholar 

  69. Duda T, Goraczniak RM, Sharma RK: Core sequence of ATP regulatory module in receptor guanylate cyclases. FEBS Lett 315: 143–148, 1993

    Google Scholar 

  70. Hanks SK, Quinn AM, Hunter T: The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52, 1988

    Google Scholar 

  71. Thompson DK, Garbers DL: Dominant negative mutations of the guanylyl cyclase-A receptor. J Biol Chem 270: 425–430, 1995

    Google Scholar 

  72. Wilson EM, Chinkers M: Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34: 4696–4701, 1995

    Google Scholar 

  73. Duda T, Sharma RK: ATP bimodal switch that regulates the ligand binding and signal transduction activities of the atrial natriuretic factor receptor guanylate cyclase. Biochem Biophys Res Commun 209: 286–292, 1995

    Google Scholar 

  74. Duda T, Sharma RK: ATP modulation of the ligand binding and signal transduction activities of the type C natriuretic peptide receptor guanylate cyclase. Mol Cell Biochem 152: 179–183, 1995

    Google Scholar 

  75. Jewett JRS, Koller KJ, Goeddel DV, Lowe DG: Hormonal induction of low affinity receptor guanylyl cyclase. EMBO J 12: 769–777, 1993

    Google Scholar 

  76. Rondeau JJ, McNicoll N, Gagnon J, Bouchard N, Ong H, de Lean A: Stoichiometry of the atrial natriuretic factor-R1 receptor complex in the bovine zona glomerulosa. Biochemistry 34: 2130–2136, 1995

    Google Scholar 

  77. Marala RB, Sitaramayya A, Sharma RK: Dual regulation of atrial natriuretic factor-dependent guanylate cyclase activity by ATP. FEBS Lett 281: 73–76, 1991

    Google Scholar 

  78. Duda T, Goraczniak RM, Sitaramayya A, Sharma RK: Cloning and expression of an ATP-regulated human retina C-type natriuretic factor receptor guanylate cyclase. Biochemistry 32: 1391–1395, 1993

    Google Scholar 

  79. Parkinson SJ, Carrithers SL, Waldman SA: Opposing adenine nucleotide-dependent pathways regulate guanylyl cyclase C in rat intestine. J Biol Chem 269: 22683–22690, 1994

    Google Scholar 

  80. Potter LR, Garbers DL: Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J Biol Chem 267: 14531–14534, 1992

    Google Scholar 

  81. Potter LR, Garbers DL: Protein kinase C-dependent desensitization of the atrial natriuretic peptide receptor is mediated by dephosphorylation. J Biol Chem 269: 14636–14642, 1994

    Google Scholar 

  82. Koller KJ, Lipari MT, Goeddel DV: Proper glycosylation and phosphorylation of the type A natriuretic peptide receptor are required for hormone-stimulated guanylyl cyclase activity. J Biol Chem 268: 5997–6003, 1993

    Google Scholar 

  83. Potter LR, Hunter T: Identification and characterization of the major phosphorylation sites of the B-type natriuretic peptide receptor. J Biol Chem 273: 15533–15539, 1998

    Google Scholar 

  84. Potter LR, Hunter T: Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor. Mol Cell Biol 18: 2164–2172, 1998

    Google Scholar 

  85. Simpson FO: Blood pressure and sodium intake. In: J.H. Laragh, B.M. Brenner (eds), Hypertension: Pathophysiology, Diagnosis and Management - Vol. I. Raven Press, New York, 1995, pp 273–282

    Google Scholar 

  86. Chamoux E, Breault L, Lehoux JG, Gallo-Payet N: Involvement of the angiotensin II type 2 receptor in apoptosis during human fetal adrenal gland development. J Clin Endocrinol Metab 84: 4722–4730, 1999

    Google Scholar 

  87. Duda T, Sharma RK: Regulation of guanylate cyclase activity by atrial natriuretic factor and protein kinase C. Mol Cell Biochem 93: 179–184, 1990

    Google Scholar 

  88. Chinkers M: Targeting of a distinctive protein serine phosphatase to the protein kinase-like domain of the atrial natriuretic peptide receptor. Proc Natl Acad Sci USA 91: 11075–11079, 1994

    Google Scholar 

  89. Hirata Y, Hirose S, Takata S, Takagi Y, Matsubara H: Down-regulation of atrial natriuretic peptide receptor and cyclic GMP response in cultured rat vascular smooth muscle cells. Eur J Pharmacol 135: 439–442, 1987

    Google Scholar 

  90. Neuser D, Bellemann P: Receptor binding, cGMP stimulation and receptor desensitization by atrial natriuretic peptides in cultured A10 vascular smooth muscle cells. FEBS Lett 209: 347–351, 1986

    Google Scholar 

  91. Roubert P, Lonchampt MO, Chabrier PE, Plas P, Goulin J, Braquet P: Down-regulation of atrial natriuretic factor receptors and correlation with cGMP stimulation in rat cultured vascular smooth muscle cells. Biochem Biophys Res Commun 148: 61–67, 1987

    Google Scholar 

  92. Hughes RJ, Struthers RS, Fong AM, Insel PA: Regulation of the atrial natriuretic peptide receptor on a smooth muscle cell. Am J Physiol 253: C809–C816, 1987

    Google Scholar 

  93. Cahill PA, Redmond EM, Keenan AK: Vascular atrial natriuretic factor receptor subtypes are not independently regulated by atrial peptides. J Biol Chem 265: 21896–21906, 1990

    Google Scholar 

  94. Schiffrin EL, St-Louis J, Hamet P, Garcia R: Vascular receptors for atrial natriuretic peptide in spontaneously hypertensive rats. In: B.M. Brenner, J.H. Laragh (eds), Progress in Atrial Peptide Research (American Society of Hypertension Symposium Series), Vol. 3. Raven Press, New York, 1990, pp 564–566

    Google Scholar 

  95. Pandey KN: Kinetic analysis of internalization, recycling and redistribution of atrial natriuretic factor-receptor complex in cultured vascular smooth-muscle cells. Ligand-dependent receptor downregulation. Biochem J 288: 55–61, 1992

    Google Scholar 

  96. Hirata Y, Takata S, Takagi Y, Matsubara H, Omae T: Regulation of atrial natriuretic peptide receptors in cultured vascular smooth muscle cells of rat. Biochem Biophys Res Commun 138: 405–412, 1986

    Google Scholar 

  97. Rathinavelu A, Isom GE: Differential internalization and processing of atrial-natriuretic-factor B and C receptor in PC12 cells. Biochem J 276: 493–497, 1991

    Google Scholar 

  98. Pandey KN, Kumar R, Li M, Nguyen H: Functional domains and expression of truncated atrial natriuretic peptide receptor-A: The carboxylterminal regions direct the receptor internalization and sequestration in COS-7 cells. Mol Pharmacol 57: 259–267, 2000

    Google Scholar 

  99. Hirata Y, Tomita M, Takada S, Yoshimi H: Vascular receptor binding activities and cyclic GMP responses by synthetic human and rat atrial natriuretic peptides (ANP) and receptor down-regulation by ANP. Biochem Biophys Res Commun 128: 538–546, 1985

    Google Scholar 

  100. Fujio N, Gossard F, Bayard F, Tremblay J: Regulation of natriuretic peptide receptor A and B expression by transforming growth factor-β1 in cultured aortic smooth muscle cells. Hypertension 23: 908–913, 1994

    Google Scholar 

  101. Hum D, Desjardins R, del Rocio Sanchez Garcia M, Devost D, Gossard F, Hamet P, Tremblay J: Characterization and localization of a cGMP response element in the guanylyl cyclase A (GC-A) promoter. 2002 (in press)

  102. Kato J, Lanier Smith KL, Currie MG: Cyclic GMP down-regulates atrial natriuretic peptide receptors on cultured vascular endothelial cells. J Biol Chem 266: 14681–14685, 1991

    Google Scholar 

  103. Zhang LM, Tao H, Newman WH: Regulation of atrial natriuretic peptide receptors in vascular smooth muscle cells: Role of cGMP. Am J Physiol 264: H1753–H1759, 1993

    Google Scholar 

  104. Kishimoto I, Nakao K, Suga SI, Hosoda K, Yoshimasa T, Itoh H, Imura H: Downregulation of C-receptor by natriuretic peptides via ANP-B receptor in vascular smooth muscle cells. Am J Physiol 265: H1373–H1379, 1993

    Google Scholar 

  105. Chen HH, Burnett JC Jr: C-type natriuretic peptide: The endothelial component of the natriuretic peptide system. J Cardiovasc Pharmacol 32 (suppl 3): S22–S28, 1998

    Google Scholar 

  106. Maack T: Role of atrial natriuretic factor in volume control. Kidney Int 49: 1732–1737, 1996

    Google Scholar 

  107. Zhang PL, Mackenzie HS, Troy JL, Brenner BM: Effects of natriuretic peptide receptor inhibition on remnant kidney function in rats. Kidney Int 46: 414–420, 1994

    Google Scholar 

  108. Sakamoto K, Kikkawa R, Haneda M, Shigeta Y: Prevention of glomerular hyperfiltration in rats with streptozotocin-induced diabetes by an atrial natriuretic peptide receptor antagonist. Diabetologia 38: 536–542, 1995

    Google Scholar 

  109. John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, Flynn TG, Smithies O: Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267: 679–681, 1995

    Google Scholar 

  110. Krag S, Osterby R, Chai Q, Nielsen CB, Hermans C, Wogensen L: TGF-beta1-induced glomerular disorder is associated with impaired concentrating ability mimicking primary glomerular disease with renal failure in man. Lab Invest 80: 1855–1868, 2000

    Google Scholar 

  111. Kasahara M, Mukoyama M, Sugawara A, Makino H, Suganami T, Ogawa Y, Nakagawa M, Yahata K, Goto M, Ishibashi R, Tamura N, Tanaka I, Nakao K: Ameliorated glomerular injury in mice overexpressing brain natriuretic peptide with renal ablation. J Am Soc Nephrol 11: 1691–1701, 2000

    Google Scholar 

  112. Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M, Smithies O: The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci USA 96: 7403–7408, 1999

    Google Scholar 

  113. Conte G, Bellizzi V, Cianciaruso B, Minutolo R, Fuiano G, De Nicola L: Physiologic role and diuretic efficacy of atrial natriuretic peptide in health and chronic renal disease. Kidney Int Suppl 59: S28–S32, 1997

    Google Scholar 

  114. Maack T, Marion DN, Camargo MJF, Kleinert HD, Laragh JH, Vaughan ED, Atlas SA: Effects of auriculin (ANF) on blood pressure, renal function, and the renin-aldosterone system in dogs. Am J Med 77: 1069–1075, 1984

    Google Scholar 

  115. Almeida FA, Suzuki M, Maack T: Atrial natriuretic factor increases hematocrit and decreases plasma volume in nephrectomized rats. Life Sci 39: 1193–1199, 1986

    Google Scholar 

  116. Trippodo NC, Robl JA, Asaad MM, Fox M, Panchal BC, Schaeffer TR: Effects of omapatrilat in low, normal, and high renin experimental hypertension. Am J Hypertens 11: 363–372, 1998

    Google Scholar 

  117. Schultz KD, Schultz K, Schultz G: Sodium nitroprusside and other smooth muscle-relaxants increase cyclic GMP levels in rat ductus deferens. Nature 265: 750–751, 1977

    Google Scholar 

  118. Katsuki S, Murad F: Regulation of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate levels and contractility in bovine tracheal smooth muscle. Mol Pharmacol 13: 330–341, 1977

    Google Scholar 

  119. Katsuki S, Arnold WP, Murad F: Effects of sodium nitroprusside, nitroglycerin, and sodium azide on levels of cyclic nucleotides and mechanical-activity of various tissues. J Cyclic Nucleotide Res 3: 239–247, 1977

    Google Scholar 

  120. Katsuki S, Arnold W, Mittal C, Murad F: Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res 3: 23–35, 1977

    Google Scholar 

  121. Lincoln TM: Effects of nitroprusside and 8-bromo-cyclic GMP on the contractile activity of the rat aorta. J Pharmacol Exp Ther 224-1: 100–107, 1983

    Google Scholar 

  122. Lincoln TM: Cyclic GMP and mechanisms of vasodilation. Pharmacol Ther 41: 479–502, 1989

    Google Scholar 

  123. Hardman JG: Cyclic nucleotides and regulation of vascular smooth muscle. J Cardiovasc Pharmacol 6 Suppl 4: S639–S645, 1984

    Google Scholar 

  124. Furuya M, Yoshida M, Hayashi Y, Ohnuma N, Minamino N, Kangawa K, Matsuo H: C-type natriuretic peptide is a growth inhibitor of rat vascular smooth muscle cells. Biochem Biophys Res Commun 177: 927–931, 1991

    Google Scholar 

  125. Murad F: Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78: 1–5, 1986

    Google Scholar 

  126. Cornwell TL, Lincoln TM: Regulation of intracellular Ca2+ levels in cultured vascular smooth muscle cells. J Biol Chem 264: 1146–1155, 1989

    Google Scholar 

  127. Lincoln TM, Cornwell TL: Towards an understanding of the mechanism of action of cyclic AMP and cyclic GMP in smooth muscle relaxation. Blood Vessels 28: 129–137, 1991

    Google Scholar 

  128. Dey NB, Boerth NJ, Murphy-Ullrich JE, Chang PL, Prince CW, Lincoln TM: Cyclic GMP-dependent protein kinase inhibits osteopontin and thrombospondin production in rat aortic smooth muscle cells. Circ Res 82: 139–146, 1998

    Google Scholar 

  129. Redondo J, Bishop JE, Wilkins MR: Effect of atrial natriuretic peptide and cyclic GMP phosphodiesterase inhibition on collagen synthesis by adult cardiac fibroblasts. Br J Pharmacol 124: 1455–1462, 1998

    Google Scholar 

  130. Burnett JC Jr, Kao PC, Hu DC, Heser DW, Heublein D, Granger JP, Opgenorth TJ, Reeder GS: Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 231: 1145–1147, 1986

    Google Scholar 

  131. Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N: Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94: 14730–14735, 1997

    Google Scholar 

  132. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y, Tanaka I, Otani H, Katsuki M: Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA 97: 4239–4244, 2000

    Google Scholar 

  133. Masciotra S, Picard S, Deschepper CF: Cosegregation analysis in genetic crosses suggests a protective role for atrial natriuretic factor against ventricular hypertrophy. Circ Res 84: 1453–1458, 1999

    Google Scholar 

  134. Deschepper CF, Masciotra S, Zahabi A, Boutin-Ganache I, Picard S, Reudelhuber TL: Functional alterations of the Nppa promoter are linked to cardiac ventricular hypertrophy in WKY/WKHA rat crosses. Circ Res 88: 223–228, 2001

    Google Scholar 

  135. Hutchinson HG, Trindade PT, Cunanan DB, Wu CF, Pratt RE: Mechanisms of natriuretic-peptide-induced growth inhibition of vascular smooth muscle cells. Cardiovasc Res 35: 158–167, 1997

    Google Scholar 

  136. Pedram A, Razandi M, Kehrl J, Levin ER: Natriuretic peptides inhibit G protein activation. Mediation through cross-talk between cyclic GMP-dependent protein kinase and regulators of G protein-signaling proteins. J Biol Chem 275: 7365–7372, 2000

    Google Scholar 

  137. Suhasini M, Li H, Lohmann SM, Boss GR, Pilz RB: Cyclic-GMPdependent protein kinase inhibits the Ras/Mitogen-activated protein kinase pathway. Mol Cell Biol 18: 6983–6994, 1998

    Google Scholar 

  138. Erhardt P, Troppmair J, Rapp UR, Cooper GM: Differential regulation of Raf-1 and B-Raf and Ras-dependent activation of mitogenactivated protein kinase by cyclic AMP in PC12 cells. Mol Cell Biol 15: 5524–5530, 1995

    Google Scholar 

  139. Lemay J, Hou Y, Tremblay J, Hamet P, deBlois D: Angiotensin 1-converting enzyme activity and vascular sensitivity to angiotensin I in rat carotid artery. Eur J Pharmacol 394: 301–309, 2000

    Google Scholar 

  140. Furuya M, Aisaka T, Honbou N, Kawashima K, Ohno T, Tanaka S, Minamino N, Kangawa K, Matsuo H: C-type natriuretic peptide inhibits intimal thickening after vascular injury. Biochem Biophys Res Commun 193: 248–253, 1993

    Google Scholar 

  141. Morishita R, Gibbons GH, Pratt RE, Tomita N, Kaneda Y, Ogihara T, Dzau VJ: Autocrine and paracrine effects of atrial natriuretic peptide gene transfer on vascular smooth muscle and endothelial cellular growth. J Clin Invest 94: 824–829, 1994

    Google Scholar 

  142. Louzier V, Eddahibi S, Raffestin B, Deprez I, Adam M, Levame M, Eloit M, Adnot S: Adenovirus-mediated atrial natriuretic protein expression in the lung protects rats from hypoxia-induced pulmonary hypertension. Hum Gene Ther 12: 503–513, 2001

    Google Scholar 

  143. Hamet P, Pausova Z, Adarichev S, Adaricheva K, Tremblay J: Hypertension: Genes and environment. J Hypertens 16: 397–418, 1998

    Google Scholar 

  144. Cusson JR, Tremblay J, Larochelle P, Schiffrin EL, Gutkowska J, Hamet P: Clinical relationships of cyclic GMP. In: F. Murad (ed), Cyclic GMP: Synthesis, Metabolism, and Function. Academic Press, San Diego, 1994, pp 305–319

    Google Scholar 

  145. Cusson JR, Hamet P, Gutkowska J, Kuchel O, Genest J, Cantin M, Larochelle P: Effects of atrial natriuretic factor on natriuresis and cGMP in patients with essential hypertension. J Hypertens 5: 435–443, 1987

    Google Scholar 

  146. Pang SC, Hoang MC, Tremblay J, Cantin M, Garcia R, Genest J, Hamet P: Effect of natural and synthetic atrial natriuretic factor on arterial blood pressure, natriuresis and cyclic GMP excretion in spontaneously hypertensive rats. Clin Sci 69: 721–726, 1985

    Google Scholar 

  147. Cusson JR, Thibault G, Kuchel O, Hamet P, Cantin M, Larochelle P: Cardiovascular, renal and endocrine responses to low doses of atrial natriuretic factor in mild essential hypertension. J Human Hypertens 3: 89–96, 1989

    Google Scholar 

  148. Dahl LK, Heine M, Tassinari L: Effects of chronic excess salt ingestion - evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med 115: 1173–1190, 1962

    Google Scholar 

  149. Dahl LK, Knudsen KD, Heine M, Leith GJ: Effects of chronic excess salt ingestion: Modification of experimental hypertension in rat by variations in the diet. Circ Res 22: 11–18, 1968

    Google Scholar 

  150. Snajdar RM, Rapp JP: Atrial natriuretic factor in Dahl rats - atrial content and renal and aortic responses. Hypertension 7: 775–782, 1985

    Google Scholar 

  151. Hirata Y, Ganguli M, Tobian L, Iwai J: Dahl S rats have increased natriuretic factor in atria but are markedly hyporesponsive to it. J Hypertens 6 (suppl I): I148–I155, 1984

    Google Scholar 

  152. Takayanagi R, Imada T, Grammer RT, Misono KS, Naruse M, Inagami T: Atrial natriuretic factor in spontaneously hypertensive rats: Concentration changes with the progression of hypertension and elevated formation of cyclic GMP. J Hypertens 4 (suppl 3): S303–S307, 1986

    Google Scholar 

  153. Marsh EA, Seymour AA, Haley AB, Whinnery MA, Napier MA, Nutt RF, Blaine EH: Renal and blood pressure responses to synthetic atrial natriuretic factor in spontaneously hypertensive rats. Hypertension 7: 386–391, 1985

    Google Scholar 

  154. Kurihara M, Gutkind JS, Saavedra JM: Alteration of atrial natriuretic peptide binding sites in spontaneously hypertensive rats. Am J Hypertens 1 (suppl): 12S–14S, 1988

    Google Scholar 

  155. Saito H, Inui KI, Matsukawa Y, Okano T, Maegawa H, Nakao K, Morii N, Imura H, Makino S, Hori R: Specific binding of atrial natriuretic polypeptide to renal basolateral membranes in spontaneously hypertensive rats (SHR) and stroke-prone SHR. Biochem Biophys Res Commun 137: 1079–1085, 1986

    Google Scholar 

  156. Swithers SE, Stewart RE, McCarty R: Binding sites for atrial natriuretic factor (ANF) in kidneys and adrenal glands of spontaneously hypertensive (SHR) rats. Life Sci 40: 1673–1681, 1987

    Google Scholar 

  157. Tremblay J, Huot C, Willenbrock RC, Bayard F, Gossard F, Fujio N, Koch C, Kuchel O, Debinski W, Hamet P: Increased cyclic guanosine monophosphate production and overexpression of atrial natriuretic peptide A-receptor mRNA in spontaneously hypertensive rats. J Clin Invest 92: 2499–2508, 1993

    Google Scholar 

  158. Deng AY, Dene H, Rapp JP: Congenic strains for the blood pressure quantitative trait locus on rat chromosome 2. Hypertension 30: 199–202, 1997

    Google Scholar 

  159. Tremblay J, Dutil J, Hamet P, Deng AY: Dissection of rat chromosome 2 with congenic strains support the ANP-receptor, GC-A as a candidate gene of hypertension in the Dahl rat. J Hypertens 19 (suppl 2): S163, 2001

    Google Scholar 

  160. Lopez J, Wong SKF, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A: Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378: 65–68, 1995

    Google Scholar 

  161. Kishimoto I, Dubois SK, Garbers DL: The heart communicates with the kidney exclusively through the guanylyl cyclase-A receptor: Acute handling of sodium and water in response to volume expansion. Proc Natl Acad Sci USA 93: 6215–6219, 1996

    Google Scholar 

  162. Brandt RR, Wright RS, Redfield MM, Burnett JC Jr: Atrial natriuretic peptide in heart failure. J Am Coll Cardiol 22: 86A–92A, 1993

    Google Scholar 

  163. Pettersson A, Hedner J, Hedner T: Renal interaction between sympathetic activity and ANP in rats with chronic ischaemic heart failure. Acta Physiol Scand 135: 487–492, 1989

    Google Scholar 

  164. Abassi Z, Haramati A, Hoffman A, Burnett JC Jr, Winaver J: Effect of converting-enzyme inhibition on renal response to ANF in rats with experimental heart failure. Am J Physiol 259: R84–R89, 1990

    Google Scholar 

  165. Abassi ZA, Kelly G, Golomb E, Klein H, Keiser HR: Losartan improves the natriuretic response to ANF in rats with high-output heart failure. J Pharmacol Exp Ther 268: 224–230, 1994

    Google Scholar 

  166. Yechieli H, Kahana L, Haramati A, Hoffman A, Winaver J: Regulation of renal glomerular and papillary ANP receptors in rats with experimental heart failure. Am J Physiol 265: F119–F125, 1993

    Google Scholar 

  167. Sakamoto A, Ono K, Abe M, Jasmin G, Eki T, Murakami Y, Masaki T, Toyo-Oka T, Hanaoka F: Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: An animal model of disrupted dystrophin-associated glycoprotein complex. Proc Natl Acad Sci USA 94: 13873–13878, 1997

    Google Scholar 

  168. Levin ER, Frank HJL, Chaudhari A, Kirschenbaum MA, Bandt A, Mills S: Decreased atrial natriuretic factor receptors and impaired cGMP generation in glomeruli from the cardiomyopathic hamster. Biochem Biophys Res Commun 159: 807–814, 1989

    Google Scholar 

  169. Tsunoda K, Mendelsohn FA, Sexton PM, Chai SY, Hodsman GP, Johnston CI: Decreased atrial natriuretic peptide binding in renal medulla in rats with chronic heart failure. Circ Res 62: 155–161, 1988

    Google Scholar 

  170. Cachofeiro V, Schiffrin EL, Cantin M, Garcia R: Glomerular and vascular atrial natriuretic factor receptors in cardiomyopathic hamsters: Correlation with the peptide biological effects. Cardiovasc Res 24: 843–850, 1990

    Google Scholar 

  171. Legault L, Cernacek P, Levy M: Attempts to alter the heterogeneous response to ANP in sodium-retaining caval dogs. Can J Physiol Pharmacol 70: 897–904, 1992

    Google Scholar 

  172. Bianchi C, Thibault G, Wrobel-Konrad E, de Lean A, Genest J, Cantin M: Atrial natriuretic factor binding sites in experimental congestive heart failure. Am J Physiol 257: F515–F523, 1989

    Google Scholar 

  173. Isnard R, Carayon A, Eurin J, Maistre G, Bouanani N, Barthelemy C, Crozatier B, Komajda M, Legrand JC: Glomerular atrial natriuretic factor receptors in experimental congestive heart failure. Am J Physiol 265: H923–H928, 1993

    Google Scholar 

  174. Garcia R, Bonhomme MC, Schiffrin EL: Divergent regulation of atrial natriuretic factor receptors in high-output heart failure. Am J Physiol 263: H1790–H1797, 1992

    Google Scholar 

  175. Cohen AM, Gelvan A, Winaver J, Kahna L, Floru S, Djaldetti M: Atrial natriuretic peptide in relative polycythemia and polycythemia vera. Haematologica 74: 351–353, 1989

    Google Scholar 

  176. Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV: Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252: 120–123, 1991

    Google Scholar 

  177. Canaan-Kuhl S, Jamison RL, Myers BD, Pratt RE: Identification of B-receptor for natriuretic peptide in human kidney. Endocrinology 130: 550–552, 1992

    Google Scholar 

  178. Mukaddam-Daher S, Gutkowska J, Tremblay J, Dam TV, Quillen EW Jr: Regulation of renal atrial natriuretic peptide receptors in pregnant sheep. Endocrinology 136: 4565–4571, 1995

    Google Scholar 

  179. Mukaddam-Daher S, Jankowski M, Dam TV, Quillen EW Jr, Gutkowska J: Renal atrial natriuretic factor receptors in hamster cardiomyopathy. Kidney Int 48: 1875–1885, 1995

    Google Scholar 

  180. Schiffrin EL: Decreased density of binding sites for atrial natriuretic peptide on platelets of patients with severe congestive heart failure. Clin Sci 74: 213–218, 1988

    Google Scholar 

  181. Strom TM, Weil J, Braun F, Stangl K, Timnik AM, Heim JM, Gerzer R: Binding sites for atrial natriuretic peptide on platelets in patients with congestive cardiomyopathy. Eur J Clin Invest 18: 524–528, 1988

    Google Scholar 

  182. Galla JH, Schneider G, Kotchen TA, Hayslett JP: Renin and aldosterone in the cardiomyopathic hamster in congestive heart failure. Endocrinology 101: 389–395, 1977

    Google Scholar 

  183. Lambert C, Larose P, Ong H, Gutkowska J, du Souich P: Influence of heart failure and sodium content in the diet on the natriuretic response to furosemide in hamsters. Res Commun Chem Pathol Pharmacol 50: 181–199, 1985

    Google Scholar 

  184. Quirion R, Dalpe M, de Lean A: Characterization, distribution, and plasticity of atrial natriuretic factor binding sites in brain. Can J Physiol Pharmacol 66: 280–287, 1988

    Google Scholar 

  185. Kubo SH, Atlas SA, Laragh JH, Cody RJ: Maintenance of forearm vasodilator action of atrial natriuretic factor in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 69: 1306–1309, 1992

    Google Scholar 

  186. Hirooka Y, Takeshita A, Imaizumi T, Suzuki S, Yoshida M, Ando S, Nakamura M: Attenuated forearm vasodilative response to intra-arterial atrial natriuretic peptide in patients with heart failure. Circulation 82: 147–153, 1990

    Google Scholar 

  187. Hirsch AT, Dzau VJ, Creager MA: Baroreceptor function in congestive heart failure: Effect on neurohumoral activation and regional vascular resistance. Circulation 75: IV36–IV48, 1987

    Google Scholar 

  188. Vagnetti D, Secca T, Roscani C, Santarella B, Di Nardo P: Atrial natriuretic factor stimulation of particulate guanylate cyclase in the alveolar zone of hamster lung: A cytochemical study. Med Sci Res 19: 47–48, 1991

    Google Scholar 

  189. Mukaddam-Daher S, Tremblay J, Fujio N, Koch C, Jankowski M, Quillen EW, Gutkowska J: Alteration of lung atrial natriuretic peptide receptors in genetic cardiomyopathy. Am J Physiol 271: L38–L45, 1996

    Google Scholar 

  190. Imamura T, Ohnuma N, Iwasa F, Furuya M, Hayashi Y, Inomata N, Ishihara T, Noguchi T: Protective effect of alpha-human atrial natriuretic polypeptide (alpha-hANP) on chemical-induced pulmonary edema. Life Sci 42: 403–414, 1988

    Google Scholar 

  191. Lofton CE, Newman WH, Currie MG: Atrial natriuretic peptide regulation of endothelial permeability is mediated by cGMP. Biochem Biophys Res Commun 172: 793–799, 1990

    Google Scholar 

  192. Perreault T, Gutkowska J: Role of atrial natriuretic factor in lung physiology and pathology. Am J Respir Crit Care Med 151: 226–242, 1995

    Google Scholar 

  193. Brandt RR, Redfield MM, Aarhus LL, Lewicki JA, Burnett JC Jr: Clearance receptor-mediated control of atrial natriuretic factor in experimental congestive heart failure. Am J Physiol 266: R936–R943, 1994

    Google Scholar 

  194. Nussenzveig DR, Lewicki JA, Maack T: Cellular mechanisms of the clearance function of type C receptors of atrial natriuretic factor. J Biol Chem 265: 20952–20958, 1990

    Google Scholar 

  195. Gutkowska J, Nemer M, Sole MJ, Drouin J, Sirois P: Lung is an important source of atrial natriuretic factor in experimental cardiomyopathy. J Clin Invest 83: 1500–1504, 1989

    Google Scholar 

  196. Lin X, Hanze J, Heese F, Sodmann R, Lang RE: Gene expression of natriuretic peptide receptors in myocardial cells. Circ Res 77: 750–758, 1995

    Google Scholar 

  197. Tei M, Horie M, Makita T, Suzuki H, Hazama A, Okada Y, Kawai C: Atrial natriuretic peptide reduces the basal level of cytosolic free Ca2+ in guinea pig cardiac myocytes. Biochem Biophys Res Commun 167: 413–418, 1990

    Google Scholar 

  198. Brown LA, Nunez DJ, Wilkins MR: Differential regulation of natriuretic peptide receptor messenger RNAs during the development of cardiac hypertrophy in the rat. J Clin Invest 92: 2702–2712, 1993

    Google Scholar 

  199. Willenbrock RC, Tremblay J, Garcia R, Hamet P: Dissociation of natriuresis and diuresis and heterogeneity of the effector system of atrial natriuretic factor in rats. J Clin Invest 83: 482–489, 1989

    Google Scholar 

  200. Cody RJ, Atlas SA, Laragh JH, Kubo SH, Covit AB, Ryman KS, Shaknovich A, Pondolfino K, Clark M, Camargo MJF, Scarborough RM, Lewicki JA: Atrial natriuretic factor in normal subjects and heart failure patients - plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J Clin Invest 78: 1362–1374, 1986

    Google Scholar 

  201. Davis D, Baily R, Zelis R: Abnormalities in systemic norepinephrine kinetics in human congestive heart failure. Am J Physiol 254: E760–E766, 1988

    Google Scholar 

  202. Levine TB, Francis GS, Goldsmith SR, Simon AB, Cohn JN: Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 49: 1659–1666, 1982

    Google Scholar 

  203. Saito Y, Nakao K, Morii N, Sugawara A, Shiono S, Yamada T, Itoh H, Sakamoto M, Kurahashi K, Fujiwara M, Imura H: Bay K 8644, a voltage-sensitive calcium channel agonist, facilitates secretion of atrial natriuretic polypeptide from isolated perfused rat hearts. Biochem Biophys Res Commun 138: 1170–1176, 1986

    Google Scholar 

  204. Burnett JC Jr: Vasopeptidase inhibition: A new concept in blood pressure management. J Hypertens Suppl 17: S37–S43, 1999

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tremblay, J., Desjardins, R., Hum, D. et al. Biochemistry and physiology of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biochem 230, 31–47 (2002). https://doi.org/10.1023/A:1014260204524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014260204524

Navigation