Skip to main content
Log in

Chemistry and Kinetics of ZnO Growth from Alkaline Hydrothermal Solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

Special features (polar growth and nonstoichiometry) of ZnO single crystals grown on seed plates of various crystallographic orientations in the ZnO–KOH–H2O and ZnO–KOH–LiOH–H2O hydrothermal systems are analyzed. The growth proceeds via the interaction of ZnO2- 2 anions with crystal surfaces, and its rate depends on the atomic structure and electric charge of the surface. The mechanism underlying the influence of Li+ ions on polar ZnO growth is considered. Partial replacement of Zn2+ by Li+ decreases the positive charge on the (0001) face and hinders the attachment of ZnO2- 2 anions. The incorporation of Li ions into the (0001¯) face decreases its negative charge and accelerates growth in the [0001¯] direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Kuz'mina, I.P. and Nikitenko, V.A., Okis' tsinka. Poluchenie i opticheskie svoistva (Zinc Oxide: Preparation and Optical Properties), Moscow: Nauka, 1984.

  2. Hirschwald, W., Bonasewicz, P., Ernst, L., et al., Zinc Oxide: Properties and Behaviour of Both the Solid/Vacuum and Solid/Gas Interface, Current Topics in Materials Science, Kaldis, E., Ed., Amsterdam: North-Holland, 1981, vol. 7, pp. 143-482.

  3. Scharovsky, A., Optische und elektrische Eigenschaften von ZnO-Einkristallen mit Zn-Ubeschup, Z. Phys., 1953, vol. 135, pp. 318-339.

    Google Scholar 

  4. Dem'yanets, L.N., Komarova, E.E., Kuz'mina, I.P., et al., Zinc Oxide Single Crystals: Preparation and IR Optical Properties, Preprint of Shubnikov Inst. of Crystallography, Russ. Acad. Sci., Moscow, 1992, no. 5.

  5. Lukina, M.M., Dissolution and Crystallization of Zinc Oxide under Hydrothermal Conditions, Vestn. Akad. Nauk Kaz. SSR, 1968, no. 7, pp. 47-50.

    Google Scholar 

  6. Demianets, L.N. and Lobachev, A.N., Current State of the Art of Hydrothermal Crystal Synthesis, Current Topics in Materials Science, Kaldis, E., Ed., Amsterdam: North-Holland, 1981, vol. 7, pp. 483-586.

  7. Kuz'mina, I.P., Dissolution and Crystallization of Zinc Oxide under Hydrothermal Conditions, Kristallografiya, 1968, vol. 13, no. 5, pp. 920-922.

  8. Laudise, R.A. and Kolb, E.D., The Solubility of Zincite in Basic Hydrothermal Solvents, Am. Mineral., 1963, vol. 48, no. 5/6, pp. 642-648.

    Google Scholar 

  9. Lauder, Y.Y., Reactions of Lithium as a Donor and an Acceptor in ZnO, J. Phys. Chem. Solids, 1960, vol. 15, pp. 324-334.

    Google Scholar 

  10. Yasegawa, S. and Ohara, G., Hydrothermal Growth and Investigation of Lithium and Copper-Doped ZnO Single Crystals, J. Ceram. Assoc. Jpn., 1967, vol. 75, no. 2, pp. 255-257.

    Google Scholar 

  11. Kuz'mina, I.P., Nikitenko, V.A., Tereshchenko, A.I., et al., Effects of Growth and Doping Conditions on the Optical Properties of Zinc Oxide Single Crystals, Gidrotermal'nyi sintez i vyrashchivanie monokristallov (Hydrothermal Synthesis and Growth of Crystals), Lobachev, A.N., Ed., Moscow: Nauka, 1982, pp. 40-68.

  12. Lobachev, A.N., Kuz'mina, I.P., and Lazarevskaya, O.A., Solubility and Crystallization Kinetics of Zinc Oxide in Aqueous KOH Solutions under Hydrothermal Conditions, Gidrotermal'nyi sintez i vyrashchivanie kristallov (Hydrothermal Synthesis and Growth of Crystals), Lobachev, A.N., Ed., Moscow: Nauka, 1982, pp. 26-39.

    Google Scholar 

  13. Kortunova, E.V. and Lyutin, V.I., Synthesis and Characterization of Materials, Tr. VNIISIMS, 1997, vol. 24, pp. 31-35.

    Google Scholar 

  14. Laudise, B.A., Kolb, E.D., and Caporaso, A.J., Hydrothermal Growth of Large Sound Crystals of Zinc Oxide, J. Am. Ceram. Soc., 1960, vol. 47, pp. 9-12.

    Google Scholar 

  15. Kuz'mina, I.P. and Antonova, V.F., Hydrothermal Crystallization of Zincite, Rost Krist., 1960, vol. 4, pp. 151-156.

  16. Croxall, D.E., Ward, R.C.C., Wallace, C.A., and Kell, R.C., Hydrothermal Growth and Investigation of Li-Doped Zinc Oxide Crystals of High Purity and Perfection, J. Cryst. Growth, 1974, vol. 22, pp. 117-124.

    Google Scholar 

  17. Kolb, E.D., Kortell, A.S., Laudise, B.A., and Huston, A.R., The Hydrothermal Growth of Low Carrier Concentration ZnO at High Water and Hydrogen Pressures, Mater. Res. Bull., 1967, vol. 2, pp. 1099-1106.

    Google Scholar 

  18. Lobachev, A.N., Kuz'mina, I.P., Shaldin, Yu.V., et al., Crystallization Kinetics of Zincite under Hydrothermal Conditions, Rost kristallov iz vysokotemperaturnykh vodnykh rastvorov (Crystal Growth from High-Temperature Aqueous Solutions), Lobachev, A.N., Ed., Moscow: Nauka, 1977, pp. 158-177.

    Google Scholar 

  19. Lukina, M.M. and Khadzhi, V.E., Crystallization Kinetics of Zincite, Rost Krist., 1972, pp. 48-51.

  20. Lukina, M.M., Lelekova, M.V., and Khadzhi, V.E., Effect of Lithium on the Growth Rate of Zincite and Quartz under Hydrothermal Conditions, Kristallografiya, 1970, vol. 15, no. 3, pp. 607-608.

    Google Scholar 

  21. Kostomarov, D.V., Demianets, L.N., and Kuzmina, I.P., Growth Kinetics of Zinc Oxide Single Crystals in Mixed KOH + LiOH Solutions, Proc. VI Int. Symp. on Hydrothermal Reactions and IV Int. Conf. on Solvo-Thermal Reactions, Bordeaux, 2000, pp. 313-317.

  22. Kuzmina, I.P., Lasarevskaya, O.A., and Nikitenko, V.A., The Influence of the Impurities on Growth Kinetics and Physical Properties of Zinc Oxide, Proc. IV Int. Symp. on Hydrothermal Reactions, Nancy: Inst. Lorrain des Géosciences, 1993, pp. 121-122.

  23. Kostomarov, D.V., Demianets, L.N., Kuzmina, I.P., and Lazarevskaya, O.A., On the Chemical Aspect of Zinc Oxide Crystallization in Basic Hydrothermal Solutions, Proc. VI Int. Symp. on Hydrothermal Reactions and IV Int. Conf. on Solvo-Thermal Reactions, Bordeaux, 2000, pp. 326-328.

  24. Evzikova, N.Z., Principles of Structural-Geometric Analysis of Crystal Faces, Zap. Vses. Mineral. O-va, 1965, vol. 94, no. 2, pp. 129-142.

    Google Scholar 

  25. Hartmann, P., Structure, Growth, and Morphology of Crystals, Z. Kristallogr., 1963, vol. 119, pp. 65-78.

    Google Scholar 

  26. Heiland, G. and Kunstmann, P., Polar Surfaces of Zinc Oxide Crystals, Surf. Sci., 1969, vol. 13, no. 1, pp. 72-84.

    Google Scholar 

  27. Khodakovskii, I.L. and Elkin, A.E., Experimental Determination of Zincite Solubility in Water and Aqueous NaOH Solutions at 100, 150, and 200?C, Geokhimiya, 1975, no. 10, pp. 1490-1497.

    Google Scholar 

  28. Bryzgalin, O.V., Some Strong Electrolytes in the Supercritical Region (Evaluation of Dissociation Constants in the Electrostatic Approximation), Geokhimiya, 1985, no. 8, pp. 1184-1195.

  29. Heiland, G. and Kohl, D., Interpretation of Surface Phenomena on ZnO by Compensation Model, Phys. Status Solidi A, 1978, vol. 49, no. 1, pp. 27-37.

    Google Scholar 

  30. Kröger, F.A., The Chemistry of Imperfect Crystals, Amsterdam: North-Holland, 1964. Translated under the title Khimiya nesovershennykh kristallov, Moscow: Mir, 1969.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dem'yanets, L.N., Kostomarov, D.V. & Kuz'mina, I.P. Chemistry and Kinetics of ZnO Growth from Alkaline Hydrothermal Solutions. Inorganic Materials 38, 124–131 (2002). https://doi.org/10.1023/A:1014008909633

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014008909633

Keywords

Navigation