Skip to main content
Log in

Particle Description of Zero-Energy Vacuum I: Virtual Particles

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

First the “frame problem” is sketched: The motion of an isolated particle obeys a simple law in Galilean frames, but how does the Galilean character of the frame manifest itself at the place of the particle? A description of vacuum as a system of virtual particles will help to answer this question. For future application to such a description, the notion of global particle is defined and studied. To this end, a systematic use of the Fourier transformation on the Poincaré group is needed. The state of a system of n free particles is represented by a statistical operator W, which defines an operator-valued measure on ^Pn (^P is the dual of the Poincaré group). The inverse Fourier–Stieltjes transform of that measure is called the characteristic function of the system; it is a function on Pn. The main notion is that of global characteristic function: it is the restriction of the characteristic function to the diagonal subgroup of Pn; it represents the state of the system, considered as a single particle. The main properties of characteristic functions, and particularly of global characteristic functions, are studied. A mathematical Appendix defines two functional spaces involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J.-Y. Grandpeix, and F. Lurc¸at, “Particle description of zero energy vacuum II: Basic Vacuum System,” following article.

  2. S. Weinberg, The Quantum Theory of Fields, Vol. I (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  3. J. Frenkel, Doklady Akademii Nauk SSSR 64, 507 (1949).

    Google Scholar 

  4. W. E. Thirring, Principles of Quantum Electrodynamics (Academic, New York, 1958).

    Google Scholar 

  5. L. Rosenfeld, Nucl. Phys. 10, 508 (1959).

    Google Scholar 

  6. S. S. Schweber, Rev. Mod. Phys. 58, 449–509 (1986).

    Google Scholar 

  7. S. S. Schweber, QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonoga (Princeton University Press, Princeton, 1994).

    Google Scholar 

  8. F. Lurc¸at, Phys. Rev. 173, 1461 (1968).

    Google Scholar 

  9. F. Lurc¸at, Ann. Phys. 106, 342 (1977).

    Google Scholar 

  10. N. Wiener, The Fourier Integral and Certain of its Applications (Cambridge University Press, Cambridge, 1933; republished by Dover, New York).

    Google Scholar 

  11. E. Hewitt, and K. A. Ross, Abstract Harmonic Analysis, Vol. I (Springer, Berlin, 1963) and Vol. II (Springer, Berlin, 1970).

    Google Scholar 

  12. A. A. Kirillov, Elements of the Theory of Representations, translated from Russian by E. Hewitt (Springer, Berlin, 1976).

    Google Scholar 

  13. J. Dixmier, C*-Algebras (North-Holland, Amsterdam, 1977).

    Google Scholar 

  14. P. Bonnet, J. Funct. Anal. 55, 220–246 (1984).

    Google Scholar 

  15. Nghiäm Xuan Hai, Commun. Math. Phys. 12, 331–350 (1969).

    Google Scholar 

  16. Nghiäm Xuan Hai, Commun. Math. Phys. 22, 301–320 (1971).

    Google Scholar 

  17. A. M. Yaglom, “second-order homogeneous Random Fields,” Proceedings IVth Berkeley Symposium Math. Statistics and Probability, Vol. 2 (University of California Press, Berkeley, 1961).

    Google Scholar 

  18. U. Fano, Rev. Mod. Phys. 29, 74–93 (1957).

    Google Scholar 

  19. T. D. Newton, and E. P. Wigner, Rev. Mod. Phys. 21, 400–406 (1949).

    Google Scholar 

  20. J. P. Baton, and G. Laurens, Phys. Rev. 176, 1574–1586 (1968).

    Google Scholar 

  21. H. Joos, Fortschr. Physik 10, 65–146 (1962).

    Google Scholar 

  22. W. H. Klink, and G. J. Smith, Commun. Math. Phys. 10, 231–244 (1968).

    Google Scholar 

  23. W. H. Klink, “Induced representation theory of the Poincaré group,” in Mathematical Methods in Theoretical Physics (Boulder, Colorado, 1968), K. T. Mahantappa and W. E.

  24. Brittin, eds. (Lectures in Theoretical Physics, Vol. 11D) (Gordon & Breach, New York, 1969).

  25. P. Eymard, Bull. Soc. Math. France 92, 181–236 (1964).

    Google Scholar 

  26. P. Eymard, “A Survey of Fourier Algebras,” in Applications of Hypergroups and Related Measure Algebras (Seattle, Washington, 1993), W. C. Connett, M.-O. Gebuhrer, and A. L. Schwartz, eds. (Contemporary Mathematics, Vol. 183) (American Mathematical Society, Providence, Rhode Island, 1995), pp. 111-128.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandpeix, JY., Lurçat, F. Particle Description of Zero-Energy Vacuum I: Virtual Particles. Foundations of Physics 32, 109–131 (2002). https://doi.org/10.1023/A:1013852931455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013852931455

Keywords

Navigation