Skip to main content
Log in

Combining the analyses of introgressive hybridisation and linkage mapping to investigate the genetic architecture of population divergence in the lake whitefish (Coregonus clupeaformis, Mitchill)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Adaptation and reproductive isolation, the engines of biological diversity, are still elusive when discussing the genetic bases of speciation. Namely, the number of genes and magnitude of selection acting positively or negatively on genomic traits implicated in speciation is contentious. Here, we describe the first steps of an ongoing research program aimed at understanding the genetic bases of population divergence and reproductive isolation in the lake whitefish (Coregonus clupeaformis). A preliminary linkage map originating from a hybrid cross between dwarf and normal ecotypes is presented, whereby some of the segregating AFLP markers were found to be conserved among natural populations. Maximum-likelihood was used to estimate hybrid indices from non-diagnostic markers at 998 AFLP loci. This allowed identification of the most likely candidate loci that have been under the influence of selection during the natural hybridisation of whitefish originating from different glacial races. As some of these loci could be identified on the linkage map, the possibility that selection of traits in natural populations may eventually be correlated to specific chromosomal regions was demonstrated. The future prospects and potential of these approaches to elucidate the genetic bases of adaptation and reproductive isolation among sympatric ecotypes of lake whitefish is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Allendorf, F.W. & G.H. Thorgaard, 1984. Tetraploidy and the evolution of salmonid fishes, in Evolutionary Genetics of Fishes, edited by B.J. Turner. Plenum Press, New York.

    Google Scholar 

  • Barton, N.H., 1998. The geometry of adaptation. Nature 395: 751–752.

    Google Scholar 

  • Barton, N.H. & K.S. Gale, 1993. Genetic analysis of hybrid zones, pp. 13–45 in Hybrid Zones and the Evolutionary Process, edited by R.G. Harrison. Oxford University Press, Oxford.

    Google Scholar 

  • Bernatchez, L., A. Chouinard & G. Lu, 1999. Integrating molecular genetics and ecology in studies of adaptive radiation: whitefish, Coregonus sp., as a case study. Biol. J. Linnean Soc. 68: 173–194.

    Google Scholar 

  • Bernatchez, L. & J.J. Dodson, 1990. Allopatric origin of sympatric populations of lake whitefish (Coregonus clupeaformis) as revealed by mitochondrial DNA restriction analysis. Evolution 44: 1263–1271.

    Google Scholar 

  • Bernatchez, L. & J.J. Dodson, 1994. Phylogenetic relationships among paleartic and neartic whitefish (Coregonus sp.) populations as revealed by mitochondrial DNA variation. Can. J. Fish. Aquat. Sci. 51: 240–251.

    Google Scholar 

  • Bernatchez, L., J.A. Vuorinen, R.A. Bodaly & J.J. Dodson, 1996. Genetic evidence for reproductive isolation and multiple origins of sympatric trophic ecotypes of whitefish (Coregonus). Evolution 50: 624–635.

    Google Scholar 

  • Bernatchez, L. & C.C. Wilson, 1998. Comparative phylogeography of Nearctic and Palearctic fishes. Mol. Ecol. 7: 431–452.

    Google Scholar 

  • Bradshaw, H.D., K.G. Otto, B. Frewen, J. McKay & D.W. Schemske, 1998. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics 149: 367–382.

    Google Scholar 

  • Bradshaw, H.D., S.M. Wilbert, K.G. Otto & D.W. Schemske, 1995. Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Minulus). Nature 376: 762–765.

    Google Scholar 

  • Bush, G.L. & J. Smith, 1998. The genetics and ecology of sympatric speciation: a case study. Res. Populat. Ecol. 40: 175–187.

    Google Scholar 

  • Carney S.E., K.A. Gardner & L.H. Rieseberg, 2000. Evolutionary changes over the fifty-year history of a hybrid population of sunflowers (Helianthus). Evolution 54: 462–474.

    Google Scholar 

  • Cloutier, S., M. Cappadocia & B.S. Landry, 1997. Analysis of RFLP mapping inaccuracy in Brassica napus L. Theor. Appl. Genet. 95: 83–91.

    Google Scholar 

  • Coyne, J.A., 1995. Speciation in monkeyflowers. Nature 376: 726–727.

    Google Scholar 

  • Darwin, C., 1859. On the Origin of Species By Means of Natural Selection. Random House, USA, Modern Library edn. (1998).

    Google Scholar 

  • Diekmann, U. & M. Doebeli, 1999. On the origin of species by sympatric speciation. Nature 400: 354–357.

    Google Scholar 

  • Edwards, A.W.F., 1972. Likelihood. Cambridge University Press, Cambridge.

    Google Scholar 

  • Fenderson O.C., 1964. Evidence of subpopulations of lake white-fish, Coregonus clupeaformis, involving a dwarf form. Trans. Am. Fish. Soc. 93: 77–94.

    Google Scholar 

  • Fisher, R.A., 1925. Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford.

    Google Scholar 

  • Hilborn, R. & M. Mangel, 1997. The Ecological Detective: Confronting Models with Data. Princeton University Press, Princeton.

    Google Scholar 

  • Huxley, J., 1942. Evolution, the Modern Synthesis. Allen and Unwin, London.

    Google Scholar 

  • Jiggens, C.D. & J. Mallet, 2000. Bimodal hybrid zones and speciation. Trends Ecol. Evol. 15: 250–255.

    Google Scholar 

  • Kim S.-C. & L.H. Rieseberg, 1999. Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgression. Genetics 153: 965–977.

    Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge.

    Google Scholar 

  • Knapik, E.W., A. Goodman, M. Ekker, M. Chevrette, J. Delgado, S. Neuhaus, N. Shimoda, W. Driever, M.C. Fishman & H.J. Jacob, 1998. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nature Genet. 18: 338–343.

    Google Scholar 

  • Kocher, T., W.-J. Lee, H. Sobolewska, D. Penman & B. McAndrew, 1998. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics 148: 1225–1232.

    Google Scholar 

  • Kondrashov, A.S. & F.A. Kondrashov, 1999. Interactions among quantitative traits in the course of sympatric speciation. Nature 400: 351–354.

    Google Scholar 

  • Lander, E., P. Green, J. Abrahamson, A. Barlow, M. Daly, S. Lincoln & L. Newburg, 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    Google Scholar 

  • Long, J.C., 1991. The genetic structure of admixed populations. Genetics 127: 417–428.

    Google Scholar 

  • Lu, G., D. Basley & L. Bernatchez, 2001. Complex evolutionary history of lake whitefish (Coregonus clupeaformis) in northeastern North America assessed with mtDNA and microsatellite markers. Mol. Ecol. 10: 965–985.

    Google Scholar 

  • Lu, G. & L. Bernatchez, 1998. Experimental evidence for reduced hybrid viability between dwarf and normal ecotypes of lake whitefish (Coregonus clupeaformis, Mitchill). Proc. Roy. Soc. London B 265: 1025–1030.

    Google Scholar 

  • Lu, G. & L. Bernatchez, 1999. Correlated trophic specialization and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution 53: 1491–1505.

    Google Scholar 

  • Mayr, E., 1942. Systematics and the Origin of Species from the Viewpoint of a Zoologist. Columbia University Press, New York.

    Google Scholar 

  • Mueller, U. & L. Wolfenbarger, 1999. AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14: 389–394.

    Google Scholar 

  • Orr, H.A., 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52: 935–949.

    Google Scholar 

  • Orr, H.A. & T.B. Smith, 1998. Ecology and speciation. Trends Ecol. Evol. 13: 502–506.

    Google Scholar 

  • Ott, J., 1991. Analysis of Human Genetic Linkage. The Johns Hopkins University Press, Baltimore, Revised edn.

    Google Scholar 

  • Pigeon, D., A. Chouinard & L. Bernatchez, 1997. Multiple modes of speciation involved in the parallel evolution of sympatric dwarf and normal morphotypes of lake whitefish (Coregonus clupeaformis, Salmonidae). Evolution 51: 196–205.

    Google Scholar 

  • Rice, W.R., 1989. Analysing tables of statistical tests. Evolution 43: 223–225.

    Google Scholar 

  • Rieseberg, L.H., 1998a. Genetic mapping as a tool for studying speciation, pp. 459–487 in Molecular Systematics of Plants, edited by D.E. Soltis, P.S. Soltis & J.J. Doyle. Chapman and Hall, New York, 2nd edn.

    Google Scholar 

  • Rieseberg, L.H., 1998b. Molecular ecology of hybridization, pp. 243–265 in Advances in Molecular Ecology, edited by G.R. Carvalho. IOS Press.

  • Rieseberg, L.H., S.J.E. Baird & A.M. Desrochers, 1998. Patterns of mating in wild sunflower hybrid zones. Evolution 52: 713–726.

    Google Scholar 

  • Rieseberg, L.H., H. Choi, R. Chan & C. Spore, 1993. Genomic map of a diploid hybrid species. Heredity 70: 285–293.

    Google Scholar 

  • Rieseberg, L.H. & C.R. Linder, 1999. Hybrid classification: insights from genetic map-based studies experimental hybrids. Ecology 80: 351–370.

    Google Scholar 

  • Rieseberg, L.H., J. Whitton & K.A. Gardner, 1999. Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics 152: 713–727.

    Google Scholar 

  • Robinson, B.W. & D. Schluter, 2000. Natural selection and the evolution of adaptive genetic variation in northern freshwater fishes, pp. 65–94 in Adaptive Genetic Variation in the Wild, edited by T.A. Mousseau, B. Sinervo & J.A. Endler. Oxford University Press, New York.

    Google Scholar 

  • Sakamoto, T., R.G. Danzmann, K. Gharbi, P. Howard, A. Ozaki, S.-K. Khoo, R.A. Woram, N. Okamoto, M.M. Ferguson, L.-E. Holm, R. Guyomard & B. Hoyheim, 2000. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss). Genetics 155: 1331–1345.

    Google Scholar 

  • Sawamura, K., A. Davis & C.-L.Wu, 2000. Genetic analysis of speciation by means of introgression into Drosophila melanogaster. Proc. Nat. Acad. Sci. 97: 2652–2655.

    Google Scholar 

  • Schemske, D.W. & H.D. Bradshaw, 1999. Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc. Nat. Acad. Sci. 96: 11910–11915.

    Google Scholar 

  • Schluter, D., 1996a. Ecological speciation in postglacial fishes. Philos. Trans. Roy. Soc. London B 351: 807–814.

    Google Scholar 

  • Schluter, D., 1996b. Ecological causes of adaptive radiation. Am. Naturalist 148: 540–564.

    Google Scholar 

  • Schluter, D., 1998. Ecological causes of speciation, pp. 114–129 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher. Oxford University Press, New York.

    Google Scholar 

  • Schluter, D., 2000. Ecological character displacement in adaptive radiation. Am. Naturalist 156: S4–S16.

    Google Scholar 

  • Scott, W. & E. Crossman, 1973. Freshwater fishes of Canada. Fish. Res. Board Can. 184: 269–277.

    Google Scholar 

  • Tanksley, S., 1993. Mapping polygenes. Ann. Rev. Genet. 27: 205–233.

    Google Scholar 

  • Taylor, E. & J. McPhail, 1999. Evolutionary history of an adaptive radiation in species pairs of three spine sticklebacks (Gasterosteus): insights from mitochondrial DNA. Biol. J. Linnean Soc. 66: 271–291.

    Google Scholar 

  • Turgeon, J., A. Estoup & L. Bernatchez, 1999. Species flock in the North American Great Lakes: molecular ecology of Lake Nipigon ciscoes (Teleostei: Coregonidae: Coregonus). Evolution 53: 1857–1871.

    Google Scholar 

  • Van der Lee, T., I. De Witte, A. Drenth, C. Alfonso & F. Govers, 1997. AFLP linkage map of the oomycete Phytophthora infestans. Fungal Genet. Biol. 21: 278–291.

    Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23: 4407–4414.

    Google Scholar 

  • Wolfram, S., 1992. Mathematica: A System for Doing Mathematics by Computer. Addison-Wesley Publishing Company, Redwood City.

    Google Scholar 

  • Young, W., P. Wheeler, V. Coryell, P. Keim & G. Thorgaard, 1998. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics 148: 839–850.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, S., Campbell, D., Baird, S. et al. Combining the analyses of introgressive hybridisation and linkage mapping to investigate the genetic architecture of population divergence in the lake whitefish (Coregonus clupeaformis, Mitchill). Genetica 111, 25–41 (2001). https://doi.org/10.1023/A:1013773600304

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013773600304