Skip to main content
Log in

Resistance to Rapamycin: A Novel Anticancer Drug

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The macrocyclic lactone rapamycin has an established place as an immune suppressive agent in organ transplantation. However, more recently it has been recognized as an inhibitor of pathways that may be activated during malignant transformation and tumor progression. Thus, increasing interest is being directed to this class of antibiotic as potential antitumor agents. Here we summarize the history, mechanism of action, and mechanisms of resistance to rapamycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vezina C,Kudelski A,Sehgal SN: Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28: 721–726, 1975

    Google Scholar 

  2. Sehgal SN,Baker H,Vezina C: Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo) 28: 727–732, 1975

    Google Scholar 

  3. Calne RY,Collier DS,Lim S,Pollard SG,Samaan A,White DJ,Thiru S: Rapamycin for immunosuppression in organ allografting. Lancet 2: 227, 1989

    Google Scholar 

  4. Schreiber SL: Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251: 283–287, 1991

    Google Scholar 

  5. Pohanka E: New immunosuppressive drugs: an update. Curr Opin Urol 11: 143–151, 2001

    Google Scholar 

  6. Saunders RN, Metcalfe MS, Nicholson ML: Rapamycin in transplantation: a review of the evidence. Kidney Int 59: 3–16, 2001

    Google Scholar 

  7. Dilling MB,Dias P,Shapiro DN,Germain GS,Johnson RK,Houghton PJ: Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type I insulin-like growth factor receptor. Cancer Res 54: 903–907, 1994

    Google Scholar 

  8. Shi Y,Frankel A,Radvanyi LG,Penn LZ,Miller RG,Mills GB: Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res 55: 1982–1988, 1995

    Google Scholar 

  9. Seufferlein T,Rozengurt E: Rapamycin inhibits constitutive p70s6k phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res 56: 3895–3897, 1996

    Google Scholar 

  10. Hosoi H,Dilling MB,Liu LN,Danks MK,Shikata T,Sekulic A,Abraham RT,Lawrence JC Jr,Houghton PJ: Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol 54: 815–824, 1998

    Google Scholar 

  11. Hosoi H,Dilling MB,Shikata T,Liu LN,Shu L,Ashmun RA,Germain GS,Abraham RT,Houghton PJ: Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res 59: 886–894, 1999

    Google Scholar 

  12. Huang S,Liu LN,Hosoi H,Dilling MB,Shikata T,Houghton PJ: p53/p21CIP1 cooperate in enforcing rapamycin-induced G1 arrest and determine the cellular response to rapamycin. Cancer Res 61: 3373–3381, 2001

    Google Scholar 

  13. Ogawa T,Tokuda M,Tomizawa K,Matsui H,Itano T,Konishi R,Nagahata S,Hatase O: Osteoblastic differentiation is enhanced by rapamycin in rat osteoblast-like osteosarcoma (ROS 17/2. 8) cells. Biochem Biophys Res Commun 249: 226–230, 1998

    Google Scholar 

  14. Grewe M,Gansauge F,Schmid RM,Adler G,Seufferlein T: Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6k pathway in human pancreatic cancer cells. Cancer Res 59: 3581–3587, 1999

    Google Scholar 

  15. Shah SA,Potter MW,Ricciardi R,Perugini RA,Callery MP: Frap-p70s6k signaling is required for pancreatic cancer cell proliferation. J Surg Res 97: 123–130, 2001

    Google Scholar 

  16. Yu K,Zhang W,Lucas J,Toral-Barza L,Peterson R,Skotnicki J,Frost P,Gibbons J: Deregulated PI3K/AKT/ TOR pathway in PTEN-deficient tumor cells correlates with an increased growth inhibition sensitivity to a TOR kinase inhibitor CCI-779. Proceedings of 92nd Annual Meeting of the AACR #4305, 2001

  17. Busca R,Bertolotto C,Ortonne JP,Ballotti R: Inhibition of the phosphatidylinositol 3-kinase/p70S6-kinase pathway induces B16 melanoma cell differentiation. J Biol Chem 271: 31824–31830, 1996

    Google Scholar 

  18. Hultsch T,Martin R,Hohman RJ: The effect of the immunophilin ligands rapamycin and FK506 on proliferation of mast cells and other hematopoietic cell lines. Mol Biol Cell 3: 981–987, 1992

    Google Scholar 

  19. Muthukkumar S,Ramesh TM,Bondada S: Rapamycin, a potent immunosuppressive drug, causes programmed cell death in B lymphoma cells. Transplantation 60: 264–270, 1995

    Google Scholar 

  20. Brown EJ,Albers MW,Shin TB,Ichikawa K,Keith CT,Lane WS,Schreiber SL: A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369: 756–758, 1994

    Google Scholar 

  21. Chiu MI,Katz H,Berlin V: RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 91: 12574–12578, 1994

    Google Scholar 

  22. Sabatini DM,Erdjument-Bromage H,Lui M,Tempst P,Snyder SH: RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78: 35–43, 1994

    Google Scholar 

  23. Sabers CJ,Martin MM,Brunn GJ,Williams JM,Dumont FJ,Wiederrecht G,Abraham RT: Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270: 815–822, 1995

    Google Scholar 

  24. Abraham RT: Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling. Curr Opin Immunol 10: 330–336, 1998

    Google Scholar 

  25. Kunz J,Henriquez R,Schneider U,Deuter-Reinhard M,Movva NR,Hall MN: Target of rapamyc in in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73: 585–596, 1993

    Google Scholar 

  26. Helliwell SB,Wagner P,Kunz J,Deuter-Reinhard M,Henriquez R,Hall MN: TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 5: 105–118, 1994

    Google Scholar 

  27. Heitman J,Movva NR,Hall MN: Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905–909, 1991

    Google Scholar 

  28. Zheng XF,Florentino D,Chen J,Crabtree GR,Schreiber SL: TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82: 121–130, 1995

    Google Scholar 

  29. Schmidt A,Kunz J,Hall MN: TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci USA 93: 13780–13785, 1996

    Google Scholar 

  30. Oldham S,Montagne J,Radimerski T,Thomas G,Hafen E: Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 14: 2689–2694, 2000

    Google Scholar 

  31. Zhang H,Stallock JP,Ng JC,Reinhard C,Neufeld TP: Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14: 2712–2724, 2000

    Google Scholar 

  32. Schmelzle T,Hall MN: TOR, a central controller of cell growth. Cell 103: 253–262, 2000

    Google Scholar 

  33. Thomas G,Hall MN: TOR signalling and control of cell growth. Curr Opin Cell Biol 9: 782–787, 1997

    Google Scholar 

  34. Brown EJ,Schreiber SL: A signaling pathway to translational control. Cell 86: 517–520, 1996

    Google Scholar 

  35. Savitsky K,Bar-Shira A,Gilad S,Rotman G,Ziv Y,Vanagaite L,Tagle DA,Smith S,Uziel T,Sfez S,Ashkenazi M,Pecker I,Frydman M,Harnik R,Patanjali SR,Simmons A,Clines GA,Sartiel A,Gatti RA,Chessa L,Sanal O,Lavin MF,Jaspers NGJ,Taylor AMR,Arlett CF,Miki T,Weissman SM,Lovett M,Collins FS,Shiloh Y: A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753, 1995

    Google Scholar 

  36. Canman CE,Lim DS,Cimprich KA,Taya Y,Tamai K,Sakaguchi K,Appella E,Kastan MB,Siliciano JD: Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281: 1677–1679, 1998

    Google Scholar 

  37. Franke TF,Yang SI,Chan TO,Datta K,Kazlauskas A,Morrison DK,Kaplan DR,Tsichlis PN: The prote in kinase encoded by the Akt proto-oncogene is a target of the PDGFactivated phosphatidylinositol 3-kinase. Cell 81: 727–736, 1995

    Google Scholar 

  38. Burgering BM,Coffer PJ: Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376: 599–602, 1995

    Google Scholar 

  39. Scott PH,Brunn GJ,Kohn AD,Roth RA,Lawrence JC Jr: Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamyc in mediated by a protein kinaseBsignaling pathway. Proc Natl Acad Sci USA 95: 7772–7777, 1998

    Google Scholar 

  40. Nave BT,Ouwens M,Withers DJ,Alessi DR,Shepherd PR: Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 344: 427–431, 1999

    Google Scholar 

  41. Dennis PB,Fumagalli S,Thomas G: Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation. Curr Opin Genet Dev 9: 49–54, 1999

    Google Scholar 

  42. Kuruvilla FG,Schreiber SL: The PIK-related kinases intercept conventional signaling pathways. Chem Biol 6: R129–R136, 1999

    Google Scholar 

  43. Gingras AC,Raught B,Sonenberg N: Regulation of translation initiation by FRAP/mTOR. Genes Dev 15: 807–826, 2001

    Google Scholar 

  44. Shah OJ,Anthony JC,Kimball SR,Jefferson LS: 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab 279: E715–729, 2000

    Google Scholar 

  45. Abraham RT,Wiederrecht GJ: Immunopharmacology of rapamycin. Annu Rev Immunol 14: 483–510, 1996

    Google Scholar 

  46. Brunn GJ,Hudson CC,Sekulic A,Williams JM,Hosoi H,Houghton PJ,Lawrence JC Jr,Abraham RT: Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277: 99–101, 1997

    Google Scholar 

  47. Hara K,Yonezawa K,Kozlowski MT,Sugimoto T,Andrabi K,Weng QP,Kasuga M,Nishimoto I,Avruch J: Regulation of eIF-4E BP1 phosphorylation bymTOR. J Biol Chem 272: 26457–26463, 1997

    Google Scholar 

  48. Gingras AC,Gygi SP,Raught B,Polakiewicz RD,Abraham RT,Hoekstra MF,Aebersold R,Sonenberg N: Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13: 1422–1437, 1999

    Google Scholar 

  49. Yang DQ,Kastan MB: Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol 2: 893–898, 2000

    Google Scholar 

  50. Kumar V,Pandey P,Sabatini D,Kumar M,Majumder PK,Bharti A,Carmichael G,Kufe D,Kharbanda S: Functional interaction between RAFTl/FRAP/mTOR and protein kinase Cä in the regulation of cap-dependent initiation of translation. EMBO J 19: 1087–1097, 2000

    Google Scholar 

  51. Lin TA,Kong X,Haystead TA,Pause A,Belsham G,Sonenberg N,Lawrence JC Jr: PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 266: 653–656, 1994

    Google Scholar 

  52. Pause A,Belsham GJ,Gingras AC,Donze O,Lin TA,Lawrence JC Jr,Sonenberg N: Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5_-cap function. Nature 371: 762–767, 1994

    Google Scholar 

  53. Sonenberg N: Remarks on the mechanism of ribosome binding to eukaryotic mRNAs. Gene Expr 3: 317–323, 1993

    Google Scholar 

  54. Rosenwald IB,Kaspar R,Rousseau D,Gehrke L,Leboulch P,Chen JJ,Schmidt EV,Sonenberg N,London IM: Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 270: 21176–21180, 1995

    Google Scholar 

  55. Hashemolhosseini S,Nagamine Y,Morley SJ,Desrivieres S,Mercep L,Ferrari S: Rapamyc in inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J Biol Chem 273: 14424–14429, 1998

    Google Scholar 

  56. Shantz LM,Pegg AE: Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neoplastic transformation. Cancer Res 54: 2313–2316, 1994

    Google Scholar 

  57. Zimmer SG,DeBenedetti A,Graff JR: Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis. Anticancer Res 20: 1343–1351, 2000

    Google Scholar 

  58. Jefferies HB,Fumagalli S,Dennis PB,Reinhard C,Pearson RB,Thomas G: Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J 16: 3693–3704, 1997

    Google Scholar 

  59. Shima H,Pende M,Chen Y,Fumagalli S,Thomas G,Kozma SC: Disruption of the p70s6k /p85s6k gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 17: 6649–6659, 1998

    Google Scholar 

  60. Pullen N,Dennis PB,Andjelkovic M,Dufner A,Kozma SC,Hemmings BA,Thomas G: Phosphorylation and activation of p70s6k by PDK1. Science 279: 707–710, 1998

    Google Scholar 

  61. Dennis PB,Pullen N,Kozma SC,Thomas G: The principal rapamycin-sensitive p70s6k phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive kinase kinases. Mol Cell Biol 16: 6242–6451, 1996

    Google Scholar 

  62. Burnett PE,Barrow RK,Cohen NA,Snyder SH,Sabatini DM: RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95: 1432–1437, 1998

    Google Scholar 

  63. von Manteuffel SR,Dennis PB,Pullen N,Gingras AC,Sonenberg N,Thomas G: The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Mol Cell Biol 17: 5426–5436, 1997

    Google Scholar 

  64. Peterson RT,Desai BN,Hardwick JS,Schreiber SL: Prote in phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycin associated protein. Proc Natl Acad Sci USA 96: 4438–4442, 1999

    Google Scholar 

  65. Volarevic S,Thomas G: Role of S6 phosphorylation and S6 kinase in cell growth. Prog Nucleic Acid Res Mol Biol 65: 101–127, 2000

    Google Scholar 

  66. Yokogami K,Wakisaka S,Avruch J,Reeves SA: Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin targetmTOR. Curr Biol 10: 47–50, 2000

    Google Scholar 

  67. Parekh D,Ziegler W,Yonezawa K,Hara K,Parker PJ: Mammalian TOR controls one of two kinase pathways acting upon nPKCδ and nPKCɛ. J Biol Chem 274: 34758–34764, 1999

    Google Scholar 

  68. Iiboshi Y,Papst PJ,Kawasome H,Hosoi H,Abraham RT,Houghton PJ,Terada N: Amino acid-dependent control of p70s6k. Involvement of tRNA aminoacylation in the regulation. J Biol Chem 274: 1092–1099, 1999

    Google Scholar 

  69. Hardwick JS,Kuruvilla FG,Tong JK,Shamji AF,Schreiber SL: Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA 96: 14866–14870, 1999

    Google Scholar 

  70. Marx SO,Jayaraman T,Go LO,Marks AR: Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res 76: 412–417, 1995

    Google Scholar 

  71. Morice WG, Brunn GJ, Wiederrecht G, Siekierka JJ, Abraham RT: Rapamycin-induced inhibition of p34cdc2 kinase activation is associated with Gl/S-phase growth arrest in T lymphocytes. J Biol Chem 268: 3734–3738

  72. Morice WG,Wiederrecht G,Brunn GJ,Siekierka JJ,Abraham RT: Rapamycin inhibition of interleukin-2-dependent p33cdk2 and p34cdc2 kinase activation in T lymphocytes. J Biol Chem 268: 22737–22745, 1993

    Google Scholar 

  73. Nourse J,Firpo E,Flanagan WM,Coats S,Polyak K,Lee MH,Massague J,Crabtree GR,Roberts JM: Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 372: 570-573, 1994

    Google Scholar 

  74. Nakayama K,Ishida N,Shirane M,Inomata A,Inoue T,Shishido N,Horii I,Loh DY,Nakayama K: Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85: 707–720, 1996

    Google Scholar 

  75. Luo Y,Marx SO,Kiyokawa H,Koff A,Massague J,Marks AR: Rapamyc in resistance tied to defective regulation of p27Kip1. Mol Cell Biol 16: 6744–6751, 1996

    Google Scholar 

  76. Chen Y,Knudsen ES,Wang JY: The RB/pl07/pl30 phosphorylation pathway is not inhibited in rapamycininduced G1-prolongation of NIH3T3 cells. Oncogene 13: 1765–1771, 1996

    Google Scholar 

  77. Koser PL,Eng WK,Bossard MJ,McLaughlin MM,Cafferkey R,Sathe GM,Faucette L,Levy MA,Johnson RK,Bergsma DJ,Livi GP: The tyrosine89 residue of yeast FKBP12 is required for rapamycin binding. Gene 129: 159–165, 1993

    Google Scholar 

  78. Dumont FJ,Staruch MJ,Grammer T,Blenis J,Kastner CA,Rupprecht KM: Dominant mutations confer resistance to the immunosuppressant, rapamycin, in variants of a T cell lymphoma. Cell Immunol 163: 70–79, 1995

    Google Scholar 

  79. Chen J,Zheng XF,Brown EJ,Schreiber SL: Identification of an 11-kDa FKBP12-rapamycin-binding doma in within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 92: 4947–4951, 1995

    Google Scholar 

  80. Sugiyama H,Papst P,Gelfand EW,Terada N: p70 S6 kinase sensitivity to rapamyc in is eliminated by amino acid substitution of Thr229. J Immunol 157: 656–660, 1996

    Google Scholar 

  81. Dilling MB,Germain GS,Houghton PJ: Acquired resistance to rapamycin is mediated by altered regulation of the 4E-BPI/eIF-4E pathway. Proceedings of 91st Annual Meeting of the AACR #5110, 2000

  82. Thimmaiah KN,Veverka KA,Patel DH,Houghton PJ: Protection against rapamyc in induced apoptosis by type I insulin-like growth factor is independent of Erk1/2 activity. Proceedings of 92nd Annual Meeting of the AACR #4302, 2001

  83. Cantley LC,Neel BG: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96: 4240–4245, 1999

    Google Scholar 

  84. Stambolic V,Suzuki A,de la Pompa JL,Brothers GM,Mirtsos C,Sasaki T,Ruland J,Penninger JM,Siderovski DP,Mak TW: Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95: 29-39, 1998

    Google Scholar 

  85. Wu X,Senechal K,Neshat MS,Whang YE,Sawyers CL: The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 95: 15587–15591, 1998

    Google Scholar 

  86. Simpson L,Parsons R: PTEN: life as a tumor suppressor. Exp Cell Res 264: 29–41, 2001

    Google Scholar 

  87. Lazaris-Karatzas A,Montine KS,Sonenberg N: Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5'cap. Nature 345: 544–547, 1990

    Google Scholar 

  88. Lazaris-Karatzas A,Sonenberg N: The mRNA 5'capbinding protein, elF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts. Mol Cell Biol 12: 1234–1238, 1992

    Google Scholar 

  89. De Benedetti A,Harris AL: eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol 31: 59–72, 1999

    Google Scholar 

  90. Nathan CA,Franklin S,Abreo FW,Nassar R,De Benedetti A,Glass J: Analysis of surgical margins with the molecular marker eIF4E: a prognostic factor in patients with head and neck cancer. J Clin Oncol 17: 2909–2914, 1999

    Google Scholar 

  91. Li BD,Liu L,Dawson M,De Benedetti A: Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma. Cancer 79: 2385–2390, 1997

    Google Scholar 

  92. Martin ME,Perez MI,Redondo C,Alvarez MI,Salinas M,Fando JL: 4E binding protein 1 expression is inversely correlated to the progression of gastrointestinal cancers. Int J Biochem Cell Biol 32: 633–642, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Houghton, P.J. Resistance to Rapamycin: A Novel Anticancer Drug. Cancer Metastasis Rev 20, 69–78 (2001). https://doi.org/10.1023/A:1013167315885

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013167315885

Navigation