Skip to main content
Log in

Error Estimates for Semidiscrete Finite Element Approximations of the Stokes Equations Under Minimal Regularity Assumptions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Semidiscrete (spatially discrete) finite element approximations of the Stokes equations are studied in this paper. Properties of L 2, H 1 and H −1 projections onto discretely divergence-free spaces are discussed and error estimates are derived under minimal regularity assumptions on the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Adams, R. (1975). SobolevSpaces, Academic, Boston.

    Google Scholar 

  2. Babuska, I., and Aziz, A. (1972). Survey lectures on the mathematical foundations of the finite element method. In Aziz, A. (ed.), The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic, New York, pp. 3–359.

    Google Scholar 

  3. Brenner, S., and Scott, L. (1994). The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York.

    Google Scholar 

  4. Chang, C., and Gunzburger, M. (1987), A finite element method for first order elliptic systems in three dimensions. Appl.Math.Comput. 23, 171–184.

    Google Scholar 

  5. Chrysafinos, K., and Hou, L.Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions. SIAM J.Numer.Anal., to appear.

  6. Ciarlet, P. (1978). The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam.

    Google Scholar 

  7. Cuvelier, C., and Segal, A. (1986). Finite Element Methods and Navier-Stokes Equations, Reidel, Dordrecht.

    Google Scholar 

  8. Fursikov, A., Gunzburger, M., and Hou, L. Trace theorems for three dimensional timedependent solonoidal vector fields and their applications. Trans.Amer.Math.Soc., to appear.

  9. Fromm, S. (1993). Potential space estimates for Green potentials in convex domains. Proc.Amer.Math.Soc. 119, 225–233.

    Google Scholar 

  10. Fromm, S. (1994). Regularity of the Dirichlet problem in convex domains in the plane. Michigan Math.J. 41, 225–233.

    Google Scholar 

  11. Fromm, S., and Jerison, D. (1994). Third derivative estimates for Dirichlet's problem in convex domains. Duke Math.J. 73, 225–233.

    Google Scholar 

  12. Girault, V., and Raviart, P.-A. (1986). Finite Element Methods for Navier-Stokes Equations, Springer, Berlin.

    Google Scholar 

  13. Grisvard, P. (1985). Elliptic Problems in Nonsmooth Domains, Pitman Publishing Inc., Marshfield, Massachusetts.

    Google Scholar 

  14. Gunzburger, M. (1989). Finite Element Methods for Viscous Incompressible Flows, Academic Press, San Diego.

    Google Scholar 

  15. Heywood, J., and Rannacher, R. (1982). Finite element approximation of the nonstationary Navier-Stokes problem, Part I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J.Numer.Anal. 19, 275–311.

    Google Scholar 

  16. Heywood, J., and Rannacher, R. (1986). Finite element approximation of the nonstationary Navier-Stokes problem, Part II. Stability of solutions and error estimates uniform in time. SIAM J.Numer.Anal. 23, 750–777.

    Google Scholar 

  17. Heywood, J., and Rannacher, R. (1988). Finite element approximation of the nonstationary Navier-Stokes problem, Part III. Smoothing property and higher order error estimates for spatial discretization. SIAM J.Numer.Anal. 25, 489–512.

    Google Scholar 

  18. Johnson, C., and Thomée, V. (1981). Error estimates for some mixed finite element methods for parabolic type problems. RAIRO Anal.Numér. 15, 41–78.

    Google Scholar 

  19. Ladyzhenskaya, O. Non-Uxistence of a Wyle Decomposition, unpublished notes.

  20. Simon, J. On the Existence of the Pressure for Solutions of the Variational Navier-Stokes Equations, preprint.

  21. Temam, R. (2001). Navier-Stokes Equations-Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, Rhode Island.

    Google Scholar 

  22. Thomasset, F. (1981). Implementation of Finite Element Methods for Navier-Stokes Equations, Springer, New York.

    Google Scholar 

  23. Thomée, V. (1997). Galerkin Finite Element Methods for Parabolic Equations, Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, L.S. Error Estimates for Semidiscrete Finite Element Approximations of the Stokes Equations Under Minimal Regularity Assumptions. Journal of Scientific Computing 16, 287–317 (2001). https://doi.org/10.1023/A:1012869611793

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012869611793

Navigation