Skip to main content
Log in

The Influence of Intestinal Mucus Components on the Diffusion of Drugs

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Mucus, a potential diffusional barrier to drug absorption, is a complex mixture of mucin and other components. The objective of this study was to investigate the composition of native pig intestinal mucus (PIM) and the influence of identified mucus components on drug diffusion.

Methods. The mucus components were separated by CsCl-density gradient centrifugation and further analyzed. The self-diffusion coefficients of mannitol, metoprolol, propranolol, hydrocortisone, and testosterone, ranging in lipophilicity from logK = −3.1 to logK = 3.3, were determined, using a small scale tracer technique. The diffusion of drugs in PIM, in solutions or dispersions of individual mucus components, and in an artificial mucus model (MLPD) reconstituted from the major mucus components mucin, lipids, protein, and DNA was compared.

Results. The dry weight of pig intestinal mucus contained (%, w/w); mucin (5%), lipids (37%), proteins (39%), DNA (6%), and unidentified materials. The most commonly occurring lipids were free fatty acids, cholesterol, and phospholipids while the most common protein was serum albumin. In PIM, but not in the purified pig gastric mucin (PPGM) solution, the diffusion of the lipophilic drugs metoprolol, propranolol, hydrocortisone, and testosterone was reduced compared to that of the hydrophilic drug mannitol. The diffusion of the lipophilic drugs was also significantly reduced in a dispersion of identified mucus lipids compared to that of mannitol. The diffusion in MLPD was similar to that in PIM for mannitol, propranolol, hydrocortisone, and testosterone, but somewhat lower for metoprolol.

Conclusions. Lipids, rather than mucin glycoproteins, are a major component which contributes to reduced diffusion of drugs in native intestinal mucus. The results suggest that reconstituted artificial mucus models are interesting alternatives to native mucus models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Matthes, F. Nimmerfall, and H. Sucker. Pharmazie 47:505–515 (1992).

    Google Scholar 

  2. P. Kearney and C. Marriott. Int. J. Pharm. 38:211–220 (1987).

    Google Scholar 

  3. A. Wikman, J. Karlsson, I. Carlstedt, and P. Artursson. Pharm. Res. 10:843–852 (1993).

    Google Scholar 

  4. J. Karlsson, A. Wikman, and P. Artursson. Int. J. Pharm. 99:209–218 (1993).

    Google Scholar 

  5. A. Wikman Larhed, P. Artursson, J. Gråsjö, and E. Björk. J. Pharm. Sci. 86:660–665 (1997).

    Google Scholar 

  6. I. Carlstedt, H. Lindgren, J. K. Sheehan, U. Ulmsten, and L. Wingerup. Biochem. J. 211:13–22 (1983).

    Google Scholar 

  7. B. Herslöf, U. Olsson, and P. Tingvall. Characterization of lecithins and phospholipids by HPLC with light scattering detection. In I. Hanin and G. Pepeu (eds.), Phospholipids; Biochemical, pharmaceutical, and analytical considerations, Plenum Press, New York, 1990, pp. 295–298.

    Google Scholar 

  8. W. W. Christie. Gas Chromatography and Lipids, The Oily Press, Ayr, Scotland, 1989.

    Google Scholar 

  9. U. Olsson, P. Kaufmann, and B. G. Herslöf. J. Chromatogr. 505:385–394 (1990).

    Google Scholar 

  10. A. Slomiany, S. Yano, B. L. Slomiany, and G. B. J. Glass. J. Biol. Chem. 253:3785–3791 (1978).

    Google Scholar 

  11. C. Hansch, P. G. Sammes, and J. B. Taylor. Comprehensive medicinal chemistry: The rational design, mechanistic study and therapeutic application of chemical compounds, Pergamon Press, Oxford, 1990.

    Google Scholar 

  12. H. Lullmann, P. B. Timmermans, and A. Ziegler. Eur. J. Pharmacol. 60:277–285 (1979).

    Google Scholar 

  13. R. Mannhold, K. P. Dross, and R. F. Rekker. Quant. Struct.-Act. Relat. 9:21–28 (1990).

    Google Scholar 

  14. L. Johansson and J.-E. Löfroth. J. Colloid Interface Sci. 142:116–120 (1991).

    Google Scholar 

  15. D. Winne and W. Verheyen. J. Pharm. Pharmacol. 42:517–519 (1990).

    Google Scholar 

  16. I. Carlstedt, J. K. Sheehan, A. P. Corfield, and J. T. Gallagher. Essays in Biochem. 20:40–76 (1985).

    Google Scholar 

  17. L. A. Sellers, A. Allen, E. R. Morris, and S. B. Ross-Murphy. Biochim. Biophys. Acta 1115:174–179 (1991).

    Google Scholar 

  18. A. Slomiany, N. I. Galicki, K. Kojima, Z. Banas-Gruszka and, B. L. Slomiany. Biochim. Biophys. Acta 665:88–91 (1981).

    Google Scholar 

  19. L. M. Lichtenberger. Ann. Rev. Physiol. 57:565–583 (1995).

    Google Scholar 

  20. W. Bernhard, A. D. Postle, M. Linck, and K. F. Sewing. Biochim-Biophys-Acta 1255:99–104 (1995).

    Google Scholar 

  21. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular biology of the cell, Garland Publishing Inc., New York, 1989.

    Google Scholar 

  22. P. Tso. Intestinal lipid absorption. Physiology of the gastrointestinal tract. 1867–1907 (1994).

  23. D. H. Alpers. Digestion and absorption of carbohydrates and proteins. Physiology of the gastrointestinal tract. 1723–1750 (1994).

  24. B. L. Slomiany, J. Sarosiek, and A. Slomiany. Dig. Dis. Sci. 5:125–145 (1987).

    Google Scholar 

  25. C. Lentner. Geigy Scientific Tables, CIBA-GEIGY Limited, Basle, 1981.

    Google Scholar 

  26. J.-P. Kraehenbuhl and M. R. Neutra. Phys. Rev. 72:853–879 (1992).

    Google Scholar 

  27. S. Holland, J. H. Eldridge, J. McGhee, and C. D. Alley. Immunoglobulin A secretion. In S. G. Schultz (eds.), Handbook of physiology, American Physiological Society, Bethesda, 1991, pp. 463–473.

    Google Scholar 

  28. R. J. Mrsny, A. L. Daugherty, S. M. Short, R. Widmer, M. W. Siegel, and G.-A. Keller. J. Drug Target. 4:233–243 (1996).

    Google Scholar 

  29. G. J. Strous. Crit. Rev. Biochem. Mol. Biol. 27:57–92 (1992).

    Google Scholar 

  30. K. Palm, P. Stenberg, K. Luthman, and P. Artursson. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larhed, A.W., Artursson, P. & Björk, E. The Influence of Intestinal Mucus Components on the Diffusion of Drugs. Pharm Res 15, 66–71 (1998). https://doi.org/10.1023/A:1011948703571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011948703571

Navigation