Skip to main content
Log in

Terplex DNA Delivery System As a Gene Carrier

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To characterize the physical and biochemical properties of the DNA terplex delivery system, which has previously been shown to deliver and express pSV-β-gal plasmid efficiently in cultured smooth muscle cells (SMC) (1).

Methods. Atomic force microscopy (AFM), zeta-potential measurement (ZP), gel electrophoresis (GE), circular dichroism (CD), fluorescence quenching and 1H-NMR spectrometry were used.

Results. AFM showed that the plasmid DNA of about 600 nm long in its extended state was condensed to the size of about 100 nm by terplex formation. The DNA condensing effect of the terplex system was as good as unmodified PLL, as shown by an ethidium bromide displacement assay. Zeta-potential measurement showed that the terplex system exerts a slightly positive surface charge (+2 mV) at a 1:1:1 weight ratio of DNA:LDL:stearyl-PLL, which showed the best transfection efficiency on SMC. GE indicated that electrophoretic mobility of the terplex system decreased with increasing amounts of stearyl-PLL, indicating that the surface charge of the terplex system became more positive as more stearyl-PLL was added. Results from CD showed that there was no significant changes in tertiary structure of plasmid DNA from the terplex formation. Presence of strong hydrophobic interaction between stearyl-PLL and LDL was confirmed by 1H-NMR, where about a 30% decrease in ε-methylene peak of PLL backbone was observed when stearyl-PLL was mixed with LDL, but this phenomenon was not observed when unmodified PLL was used.

Conclusions. Our results indicate that the plasmid DNA, when formulated with the stearyl-PLL and LDL, forms a stable and hydrophobicity / charge balanced terplex system of optimal size for efficient cellular uptake and the DNA is still intact after the terplex formation. This information is expected to be utilized for the development of much improved transfection vectors for in vivogene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Kim, A. Maruyama, T. Akaike, and S. W. Kim. J. Control. Rel. 47:51–59 (1997).

    Google Scholar 

  2. R. C. Mulligan. Science 260:926–932 (1993).

    Google Scholar 

  3. R. M. Blease, K. W. Culver, A. D. Miller, C. S. Carter, T. Fleisher, M. Clerici, G. Sheare, L. Chang, Y. Chiang, P. Tolstoshev, J. J. Greenblatt, S. A. Rosenberg, H. Klein, M. Berger, C. A. Mullen, W. J. Ramsey, L. Muul, R. A. Morgan, and W. F. Anderson. Science 270:475–480 (1995).

    Google Scholar 

  4. J. M. Leiden. New Eng. J. Med. 333:871–872 (1995).

    Google Scholar 

  5. T. Friedmann. Gene Ther. 1:217–218 (1994).

    Google Scholar 

  6. A. G. Gitman, A. Graessmann, and A. Loyter. Proc. Natl. Acad. Sci. USA 82:7309–7313 (1985).

    Google Scholar 

  7. E. Gilboa, M. A. Eglitis, P. W. Kantoff, and W. F. Anderson. Biotechniques 4:504–512 (1986).

    Google Scholar 

  8. D. G. Miller, M. A. Adam, and A. D. Miller. Mol. Cell Biol. 10:4239–4342 (1990).

    Google Scholar 

  9. H. M. Temin. Human Gene Ther. 1:111–123 (1990).

    Google Scholar 

  10. P. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. Proc. Natl. Acad. Sci. USA 84:7314–7417 (1987).

    Google Scholar 

  11. X. Gao and L. Huang. Biochem. Biophys. Res. Commun. 179:280–285 (1991).

    Google Scholar 

  12. J. P. Behr, B. Demeneix, J. P. Loeffler, and J. Perez-Mutul. Proc. Natl. Acad. Sci. USA 86:6982–6986 (1989).

    Google Scholar 

  13. N. J. Caplen, E. W. F. W. Alton, P. G. Middleton, J. R. Dorin, B. J. Stevenson, X. Gao, S. R. Durham, P. K. Jeffrey, M. E. Hodson, C. Cooutelle, L. Huang, D. J. Porteous, R. Williamson, and D. M. Geddes. Nature Medicine 1:39–49 (1995).

    Google Scholar 

  14. E. Wagner, M. Zenke, M. Cotten, H. Beug, and M. L. Birnstiel. Proc. Natl. Acad. Sci. USA 87:3410–3414 (1990).

    Google Scholar 

  15. G. Y. Wu and C. H. Wu. J. Biol. Chem. 263:14621–14624 (1988).

    Google Scholar 

  16. X. Zhou, A. L. Klibanov, and L. Huang. Biochim. Biophys. Acta 1065:8–14 (1991).

    Google Scholar 

  17. H. G. Hansma and D. E. Laney. Biophys. J. 70:1933–1939 (1996).

    Google Scholar 

  18. T. Maniatis, E. F. Fritsch, and J. Sambrook. Molecular Cloning: A laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982).

    Google Scholar 

  19. B. Samori, G. Siligardi, C. Quagliariello, A. L. Weisenhorn, J. Vesenka, and C. J. Bustamante. Proc. Natl. Acad. Sci. USA 90:3598–3601 (1993).

    Google Scholar 

  20. H. G. Hansma, K. A. Crowne, M. Nezamilla, and T. C. Bruice. Biochemistry. 33:8436–8441 (1994).

    Google Scholar 

  21. L. Piestrasanta, L. Schaper, and T. M. Jovin Nucleic Acids Res. 22:3288–3292 (1994).

    Google Scholar 

  22. F. S. Allen, D. M. Gray, G. P. Roberts, and I. Tinoco Jr. Biopolymers 11:853–879 (1972).

    Google Scholar 

  23. U. K. Laemmli. Proc. Natl. Acad. Sci. USA 72:4288–4292 (1975).

    Google Scholar 

  24. S. A. Afione, C. K. Conrad, and T. R. Flotte. Clin. Pharmacokin. 28:181–189 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JS., Maruyama, A., Akaike, T. et al. Terplex DNA Delivery System As a Gene Carrier. Pharm Res 15, 116–121 (1998). https://doi.org/10.1023/A:1011917224044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011917224044

Navigation