Skip to main content
Log in

Preparation of γ-Alumina Membranes From Sulphuric Electrolyte Anodic Alumina and Its Transition to α-Alumina

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Gamma-alumina membrane was prepared from anodic (amorphous) alumina (AA) obtained in a sulphuric acid electrolyte. The transformation scheme, i.e., the crystallization to form metastable alumina polymorphs and the final transition to α-Al2O3 with heating was studied by TG-DTA and X-ray diffraction (XRD) using fixed time (FT) method. When heating at a constant rate, the crystallization occurred at 900°C or higher and the final formation of α-Al2O3 occurred at 1250°C or higher, which temperatures were higher than the case of using anodic (amorphous) alumina prepared from oxalic acid electrolyte. Relative content of S of the products was obtained by transmission electron microscope (TEM)-energy dispersive spectroscopy (EDS). The proposed thermal change of anodic alumina membrane prepared from sulphuric acid is as follows:

1. At temperatures lower than ca 910°C: Formation of a quasi-crystalline phase or a polycrystalline phase (γ-, δ- and θ-Al2O3);

2. 910–960°C: Progressive crystallization by the migration of S toward the surface within the amorphous or the quasi-crystalline phase, forming S-rich region near the surface;

3. 960°C: Change of membrane morphology and the quasi-crystalline phase due to the rapid discharge of gaseous SO2;

4. 960–1240°C: Crystallization of γ-Al2O3 accompanying δ-Al2O3; and

5. 1240°C: Transition from γ-Al2O3 (+tr. δ-Al2O3) into the stable α-Al2O3.

The amorphization which occurs by the exothermic and the subsequent endothermic reaction suggests the incorporation of SO3 groups in the quasi-crystalline structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kameyama, Hyomen Gijyutsu, 48 (1997) 994 (in Japanese).

    Google Scholar 

  2. D. L. Trimm, Appl. Catal., 7 (1983) 249.

    Article  CAS  Google Scholar 

  3. T. Tsukada, H. Segawa, A. Yasumori and K. Okada, J. Mater. Chem., 9 (1999) 549.

    Article  CAS  Google Scholar 

  4. T. Ishikawa, R. Ohashi, H. Nakabayashi, N. Kakuta, A. Ueno and A. Furuta, J. Catal., 134 (1992) 87.

    Article  CAS  Google Scholar 

  5. K. Okada, A. Tanaka and S. Hayashi, J. Mater. Res., 9 (1994) 1709.

    CAS  Google Scholar 

  6. G. C. Bye and G. T. Simpkin, J. Am. Ceram. Soc., 57 (1974) 367.

    Article  CAS  Google Scholar 

  7. Y. Saito, T. Takei, S. Hayashi, A. Yasumori and K. Okada, J. Am. Ceram. Soc., 57 (1998) 2197.

    Google Scholar 

  8. R. S. Alwitt and T. Kudo, J. Met. Finish. Soc. Jpn., 32 (1981) 226.

    Google Scholar 

  9. T. Sato, Netsu Sokutei (J. of Calorimetry and Thermal Analysis) 13 (1986) 113 (in Japanese).

    CAS  Google Scholar 

  10. R. Ozao, M. Ochiai, Y. Ichimura, H. Takahashi and T. Inada, Thermochim. Acta, 352-353 (2000) 91.

    Article  CAS  Google Scholar 

  11. R. Ozao, H. Yoshida, Y. Ichimura, T. Inada and M. Ochiai, submitted for publication in J. Therm. Anal. Cal.

  12. P. P. Mardilovich, N. G. Govyadinov, N. I. Mukhurov, A. M. Rzhevsii and R. Peterson, J. Membrane Sci., 98 (1995) 131.

    Article  CAS  Google Scholar 

  13. Ihsan Barin, Thermochemical Data of Pure Substances, VCH Publishers, 1989.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozao, R., Ochiai, M., Yoshida, H. et al. Preparation of γ-Alumina Membranes From Sulphuric Electrolyte Anodic Alumina and Its Transition to α-Alumina. Journal of Thermal Analysis and Calorimetry 64, 923–932 (2001). https://doi.org/10.1023/A:1011518929708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011518929708

Navigation