Skip to main content
Log in

A Model Description of the Thermochemical Properties of Multicomponent Slags and Its Application to Slag Viscosities

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In view of the urgent need for an extrapolation of the thermochemical and thermophysical properties of multicomponent metallurgical slags, a semiempirical slag model has been developed at the Department of Metallurgy, Royal Institute of Technology, Stockholm. In this model, Temkin's description of ionic melts is coupled with Lumsden's total dissociation of polymerized silicate and aluminate species. The excess Gibbs energies are described by means of Redlich–Kister polynomials. The model parameters that correspond to binary silicate systems are generated from available experimental data and used consequently to describe systems of higher order. The model is successful in extrapolating the thermodynamic data for a number of ternary and higher-order silicate systems. In view of the uncertainties in the literature data in the case of the Al2O3–SiO2system, Knudsen cell mass spectrometric measurements are conducted and the model parameters are assigned on the basis of these results. This enables reasonable predictions of the thermodynamic properties of multicomponent aluminosilicate slags. The model description is also used in linking thermodynamic data with slag viscosities. The viscosities of ternary silicates could be predicted from the binary viscosities and the thermodynamic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Masson, C.R., Thermodynamics and Constitution of Silicate Slags, J. Iron Steel Inst., 1972, vol. 210, pp. 89-96.

    Google Scholar 

  2. Hillert, M., Jansson, B., Sundman, B., and Ågren, J., A Two-Sublattice Model Molten Solutions with Different Tendency for Ionization, Metall. Trans. A, 1985, vol. 16, pp. 261-266.

    Google Scholar 

  3. Gaye, H. and Welfringer, J., Modeling of the Thermodynamic Properties of Complex Metallurgical Slags, in Second Int. Symp. on Metallurgical Slags and Fluxed, Lake Tahoe, Nevada, Nevada: AIME, 1984, pp. 357-375.

    Google Scholar 

  4. Lumsden, J., The Thermodynamics of Liquid Iron Silicates, Physical Chemistry Proceedings: Metallurgy, Part 1, Pittsburgh: Interscience, 1959, pp. 165-205.

    Google Scholar 

  5. Temkin, M., Mixtures of Fused Salts as Ionic Solutions, Zh. Fiz. Khim., 1945, vol. 20, pp. 411-420.

    Google Scholar 

  6. Richardson, F.D., The Solutions of Metallurgist-Retrospect and Prospect, Physical Chemistry Proceedings: Metallurgy, Part 1, Pittsburgh: Interscience, 1959, pp. 1-26.

    Google Scholar 

  7. Bygdén, J., Du Sichen, and Seetharaman, S., Thermodynamic Activities of FeO in CaO-FeO-SiO2 Slags, Steel Res., 1994, vol. 10, pp. 421-428.

    Google Scholar 

  8. Björkvall, J., Du Sichen, and Seetharaman, S., Thermodynamic Description of CaO-FeO-SiO2 and CaO-MnO-SiO2 Melts, High Temp. Mater. Proc., 1999, vol. 18, pp. 253-268.

    Google Scholar 

  9. Björkvall, J., Thermodynamic Study of Silicate and Aluminate Melts-A Model Approach, Lic. Thesis, Dept. Metall., Royal Inst. Technol., Stockholm, 1998.

    Google Scholar 

  10. Björkvall, J. and Stolyarova, V.L., A Knudsen Cell Mass Spectrometric Study of Al2O3-SiO2 Melts, Rapid Commun. Mass Spectrom., 2000 (in press).

  11. Seetharaman, S. and Du Sichen, A Model for Estimation of Viscosities of Complex Metallic and Ionic Melts, Metall. Mater. Trans. B, 1994, vol. 25, pp. 589-595.

    Google Scholar 

  12. Sawamura, K., Activity of Lime in Blast-Furnace Type Slags, Tetsu to Hagane, 1962, vol. 2, pp. 219-225.

    Google Scholar 

  13. Sanbongi, K. and Omori, Y., Activities of Silica and Alumina in Molten CaO-SiO2-Al2O3 Slags, Physical Chemistry: Metallic Solutions and Intermetallic Compounds, II, London, 1959, pp. 1-10.

  14. Omori, Y. and Sanbongi, K., Activity of CaO in Slag CaO-Al2O3-SiO2 System, J. Met. Inst. Jpn., 1961, vol. 25, no. 2, pp. 139-143.

    Google Scholar 

  15. Stolyarova, V.L., Shornikov, S.I., Ivanov, G.G., and Shultz, M.M., High Temperature Mass Spectrometric Study of Thermodynamic Properties of the CaO-SiO2 System, J. Electrochem. Soc., 1991, vol. 138, pp. 3710-3714.

    Google Scholar 

  16. Rein, H.R. and Chipman, J., Activities in the Liquid Solution SiO2-CaO-MgO-Al2O3 at 1600°C, Trans. Metall. Soc. AIME, 1965, vol. 233, pp. 415-425.

    Google Scholar 

  17. Carter, P.T. and Macfarlane, T., Thermodynamics of Slag Systems, J. Iron Steel Inst., 1957, vol. 185, pp. 54-66.

    Google Scholar 

  18. Sharma, R.A. and Richardson, F.D., The Solubility of Calcium Sulphide and Activities in Lime-Silica Melts, J. Iron Steel Inst., 1962, vol. 200, pp. 373-379.

    Google Scholar 

  19. Kay, D.A.R. and Taylor, C.R., Activities of Silica in the Lime-Alumina-Silica System, J. Trans. Faraday Soc., 1960, vol. 56, pp. 1372-1386.

    Google Scholar 

  20. Fulton, J.C. and Chipman, J., Slag-Metal-Graphite Reactions and the Activity of Silica in Lime-Alumina-Silica Slags, Trans. Metall. Soc. AIME, 1954, vol. 200, pp. 1136-1146.

    Google Scholar 

  21. Slag Atlas, Edited by the Verein Deutscher Eisenhüttenleute, Düsseldorf: Stahleisen, 1995, 2nd ed.

    Google Scholar 

  22. Schumann, R. and Ensio, P.J., Thermodynamics of Iron-Silicate Slags: Slags Saturated with Gamma Iron, Trans. AIME, 1951, vol. 191, pp. 401-411.

    Google Scholar 

  23. Bodsworth, C., The Activity of Ferrous Oxide in Silicate Melts, J. Iron Steel Inst., 1959, vol. 193, pp. 13-24.

    Google Scholar 

  24. Ban-Ya, S., Chiba, A., and Hilkosaka, A., Thermodynamics of FetO-MxOy (MxOy = CaO, SiO2, TiO2, Al2O3) Binary Melts in Equilibrium with Solid Iron, Tetsu to Hagane, 1980, vol. 66, no. 10, pp. 1484-1493.

    Google Scholar 

  25. Van Wijngaarden, M. and Dippenaar, R., The Use of Zirconia-Based Solid Electrolytes for the Rapid Determination of Iron Oxide Activities in Iron-and Steel-Making Slags, J. S. Afr. Inst. Min. Metall., 1989, vol. 86, no. 11, pp. 443-453.

    Google Scholar 

  26. Wanibe, Y., Yamauchi, Y., Kawai, K., and Sakao, H., Electrochemical Measurement of the Activity of Iron Oxide in FeO-SiO2 Liquid Slags, Arch. Eisenhutten., 1973, vol. 44, no. 9, pp. 711-717.

    Google Scholar 

  27. Fujita, H. and Maruhashi, S., Activities in the Iron-Oxide Silica Slags, Tetsu to Hagane, 1969, vol. 55, pp. 249-260.

    Google Scholar 

  28. Distin, P.A., Whiteway, S.G., and Masson, C.R., Thermodynamics and Constitution of Ferrous Silicate Melts, Can. Metall. Quart., 1971, vol. 10, pp. 73-78.

    Google Scholar 

  29. Takeda, Y. and Yazawa, A., Nippon Kogyokaishi, 1980, vol. 96, pp. 901-906.

    Google Scholar 

  30. Iwase, M., Yamada, N., Nishida, K., and Ichise., E., Rapid Determinations of the Activities in CaO-FexO Liquid Slags by Disposable Electrochemical Oxygen Probes, Trans. Iron Steel Soc. AIME, 1984, vol. 4, pp. 69-75.

    Google Scholar 

  31. Fujita, H., Iritani, Y., and Maruhashi, S., Activities in the Iron-Oxide Lime Slags, Tetsu to Hagane, 1968, vol. 54, pp. 359-370.

    Google Scholar 

  32. Kambayashi, S. and Kato, E., A Thermodynamic Study of (Magnesium Oxide + Silicon Dioxide) by Mass-Spectrometry, J. Chem. Thermodyn., 1983, vol. 15, pp. 701-707.

    Google Scholar 

  33. Von Schenck, H., Frohberg, M.G., and El Gammal, T., Bestimmung der Aktivität des Manganoxyduls in flussigen Manganoxydul-Kieselsäure-Schlacken bei 1550°C, Arch. Eisenhutten., 1961, vol. 32, pp. 509-511.

    Google Scholar 

  34. Abraham, K.P., Davies, M.W., and Richardson, F.D., Activities of Manganese Oxide in Silicate Melts, J. Iron Steel Inst., 1960, vol. 196, pp. 82-89.

    Google Scholar 

  35. Mehta, S.R. and Richardson, F.D., Activities of Manganese Oxide and Mixing Relationships in Silicate and Aluminate Melts, J. Iron Steel Inst., 1965, vol. 203, pp. 524-528.

    Google Scholar 

  36. Rao, B.K.D.P. and Gaskell, D.R., The Thermodynamic Properties of Melts in the System MnO-SiO2, Metall. Trans. B, 1981, vol. 12, pp. 311-317.

    Google Scholar 

  37. Glasser, F.P., The system MnO-SiO2, Am. J. Sci., 1958, vol. 256, no. 6, pp. 398-412.

    Google Scholar 

  38. Sharma, R.A. and Richardson, F.D., Activities in Lime-Alumina Melts, J. Iron Steel Inst., 1961, vol. 198, pp. 386-390.

    Google Scholar 

  39. Cameron, J., Gibbons, T.B., and Taylor, J., Calcium Sulphide Solubilities and Lime Activities in the Lime-Alumina-Silica System, J. Iron Steel Inst., 1966, vol. 204, pp. 1223-1228.

    Google Scholar 

  40. Kor, G.J.W. and Richardson, F.D., Sulfur in Lime-Alumina Mixtures, J. Iron Steel Inst., 1968, vol. 206, pp. 700-704.

    Google Scholar 

  41. Edmunds, D.M. and Taylor, J., Reaction CaO + 3C = CaC2 + CO and Activity of Lime in CaO-Al2O3-CaF2 System, J. Iron Steel Inst., 1972, vol. 210, pp. 280-283.

    Google Scholar 

  42. Allibert, M., Chatillon, C., Jacob, K.T., and Lourtau, R., Mass-Spectrometric and Electrochemical Studies of Thermodynamic Properties of Liquid and Solid Phases in the System CaO-Al2O3, J. Am. Ceram. Soc., 1981, vol. 64, pp. 307-314.

    Google Scholar 

  43. Hino, M., Thermodynamics of Phosphorus in Carbon-Saturated Manganese-Based Alloys, CAMP-ISIJ, 1994, vol. 7, no. 1, pp. 40-41.

    Google Scholar 

  44. Sharma, R.A. and Richardson, F.D., Activities of Manganese Oxide, Sulfide Capacities, and Activity Coeffi-cients in Aluminate and Silicate Melts, Trans. Metall. Soc. AIME, 1965, vol. 233, pp. 1587-1592.

    Google Scholar 

  45. Jacob, K.T., Revision of Thermodynamic Data on MnO-Al2O3 Melts, Can. Metall. Quart., 1981, vol. 20, no. 1, pp. 89-92.

    Google Scholar 

  46. Shornikov, S.I., Stolyarova, V.L., and Shultz, M.M., High Temperature Mass Spectrometric Study of 3Al2O3 · 2SiO2, Rapid Commun. Mass Spectrom., 1994, vol. 5, no. 5, pp. 478-480.

    Google Scholar 

  47. Zaitzev, A.I., Litvina, A.D., and Mogutnov, B.M., Thermodynamic Properties of Mullite 3Al2O3 · 2SiO2, Neorg. Mater., 1995, vol. 31, no. 6, pp. 768-772.

    Google Scholar 

  48. Dhima, A., Stafa, B., and Allibert, M., Activity Measurements in Steel-Making-Related Oxide Melts by Differential Mass-Spectrometry, High Temp. Sci., 1986, vol. 21, pp. 143-159.

    Google Scholar 

  49. Hillert, M., Sundman, B., and Xizhen Wang, A Thermodynamic Evaluation of the Al2O3-SiO2 System, TRITA-MAC-0402 Materials Research Center, Stockholm: Royal Inst. Technol., 1989.

    Google Scholar 

  50. Klug, F.J., Prochazka, S., and Doremus, R.H., Alumina-Silica Phase Diagram in the Mullite Region, J. Am. Ceram. Soc., 1987, vol. 70, no. 10, pp. 750-759.

    Google Scholar 

  51. Ogura, T., Fujiwara, R., Mochizuki, R., Kawamoto, Y., Oishi, T., and Iwase, M., Activity Determinator for the Automatic Measurements of Chemical Potentials of FeO in Metallurgical Slags, Metall. Trans. B, 1992, vol. 23, pp. 459-466.

    Google Scholar 

  52. Ban-Ya, S. and Shim., J.-D., Application of the Regular Solution Model for the Equilibrium of Distribution of Oxygen between Liquid Iron and Steelmaking Slags, Can. Metall. Quart., 1982, vol. 21, no. 4, pp. 319-328.

    Google Scholar 

  53. Fujita, H. and Maruhashi, S., Equilibrium between FeO-MnO-SiO2 Slags and Molten Iron, Tetsu to Hagane, 1970, vol. 56, no. 7, pp. 830-854.

    Google Scholar 

  54. Sommerville, D., Ivanchev, I., and Bell, H.B., Activity in Melts Containing FeO, MnO, Al2O3, and SiO2, Proc. Int. Symp. Metall. Chem. Application in Ferrous Metallurgy, Sheffield: Iron and Steel Inst., 1971, pp. 23-25.

    Google Scholar 

  55. Ban-Ya, S., Hino, M., and Yuge, N., Activity of the Constituents in FeO-SiO2-MnO Slags in Equilibrium with Solid Iron, Iron Steel Inst. Jpn., 1985, vol. 71, pp. 853-860.

    Google Scholar 

  56. Fischer, W.A. and Bardenheuer, P.W., Die Gleichgewichte zwischen mangan-, aluminium-und sauerstoff-haltigen Eisenschmelzen und ihren Schlacken im Mangan(II)-Oxydtiegel bei 1530 bis 1700°C, Arch. Eisenhutten., 1968, vol. 39, pp. 637-643.

    Google Scholar 

  57. Maruhashi, S., Equilibrium between FeO-MnO-Al2O3 Slags and Molten Iron, Tetsu to Hagane, 1971, vol. 57, pp. 891-902.

    Google Scholar 

  58. Wasastjema, J.A., On the Theory of the Heat of Formation of Solid Solutions, Soc. Sci. Fenn. Commun. Phys. Math., 1949, vol. 15, no. 3, pp. 1-13.

    Google Scholar 

  59. Ji, F., Studies on Viscosities of Some Multicomponent Slags, Ph. D. Thesis, Dept. Metall., Royal Inst. Technol., Stockholm, 1999.

  60. Licko, T. and Danek, V., Viscosity and Structure of Melts in the System CaO-MgO-SiO2, Phys. Chem. Glasses, 1986, vol. 27, pp. 22-26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björkvall, J., Sichen, D., Stolyarova, V. et al. A Model Description of the Thermochemical Properties of Multicomponent Slags and Its Application to Slag Viscosities. Glass Physics and Chemistry 27, 132–147 (2001). https://doi.org/10.1023/A:1011332410674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011332410674

Keywords

Navigation