Skip to main content
Log in

Induction of Nitric Oxide Synthesis by Probiotic Lactobacillus rhamnosus GG in J774 Macrophages and Human T84 Intestinal Epithelial Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Backgrounds and Aims: Probiotic Lactobacillus rhamnosus GG (LGG) has proved to be beneficial in the treatment of viral- and antibiotic-associated diarrhea but the mechanisms of action remain unknown. Nitric oxide (NO) is involved in the protective mechanisms in the gastrointestinal tract and may contribute to some of the beneficial effects of probiotics. The aim of the present study was to investigate if induction of NO synthesis is involved in the cellular actions of LGG.

Methods: NO synthesis and its regulation were measured in cultures of J774 murine macrophages and human T84 colon epithelial cells. NO production was measured as its metabolite nitrite accumulated into the culture medium. Inducible nitric oxide synthase (iNOS) protein and iNOS mRNA were detected by Western blot and RT-PCR, respectively.

Results: In J774 macrophages, LGG induced a low level production of NO in the presence of gamma interferon (IFNγ) and it was inhibited by NOS inhibitors, cycloheximide and by a NF-kappa B inhibitor pyrrolidinedithiocarbamate. Accordingly, LGG and IFNγ-stimulation increased iNOS mRNA and protein levels. T84 cells produced NO in response to LGG when first primed with a combination of IL-1β, TNFα and IFNγ. Lipoteichoic acid (LA), an antigenic structure in gram-positive bacteria, also induced NO formation in J774 cells in the presence of IFNγ suggesting that LA may be the active component in LGG.

Conclusions: LGG induces NO production in J774 macrophages and in human T84 colon epithelial cells through induction of iNOS by a mechanism involving activation of transcription factor NF-κB. Induction of iNOS and low-level synthesis of NO may be involved in the protective actions of LGG in the gastrointestinal tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alander, M., R. Korpela, M. Saxelin, T. Vilpponen-Salmela, T. Mattila-Sandholm, and A. Von Wright. 1997. Recovery of Lactobacillus rhamnosus GG from human colonic biopsies. Lett. Appl. Microbiol. 24:361–364.

    Google Scholar 

  2. Alican, I., and P. Kubes. 1996. A critical role for nitric oxide in intestinal barrier function and dysfunction. Am. J. Physiol. 270:G225–G237.

    Google Scholar 

  3. Biller, J. A., A. J. Katz, A. F. Flores, T. M. Buie, and S. L. Gorbach. 1995. Treatment of recurrent Clostridium difficile colitis with Lactobacillus GG. J. Pediatr. Gastr. Nutr. 21:224–226.

    Google Scholar 

  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Google Scholar 

  5. Campieri, M., and P. Gionchetti. 1999. Probiotics in inflammatory bowel disease: new insight to pathogenesis or a possible therapeutic alternative? Gastroenterology 116:1246–1249.

    Google Scholar 

  6. Chen, B. C., C. F. Chou, and W. W. Lin. 1998. Pyrimidinoceptormediated potentiation of inducible nitric-oxide synthase induction in J774 macrophages. Role of intracellular calcium. J. Biol. Chem. 273:29754–29763.

    Google Scholar 

  7. Colgan, S. P. 1998. Nitric oxide and intestinal epithelia: just say NO. Gastroenterology 114: 601–603.

    Google Scholar 

  8. Conforti, A., M. Donini, G. Brocco, P. Del Soldato, G. Benoni, and L. Cuzzolin. 1993. Acute anti-inflammatory activity and gastrointestinal tolerability of diclofenac and nitrofenac. Agents Actions 40:176–180.

    Google Scholar 

  9. Fabia, R., A. Ar'Rajab, M. L. Johansson, R. Andersson, Willen, B. Jeppsson, G. Molin, and S. Bengmark. 1993. Impairment of bacterial flora in human ulcerative colitis and experimental colitis in the rat. Digestion 54:248–255.

    Google Scholar 

  10. Garvey, E. P., J. A. Oplinger, E. S. Furfine, R. J. Kiff, F. Laszlo, B. J. Whittle, and R. G. Knowles. 1997. 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J. Biol. Chem. 272:4959–4963.

    Google Scholar 

  11. Gorbach, S. L. 1996. Efficacy of Lactobacillus in the treatment of acute diarrhea. Nutrition Today 31: S19–S23.

    Google Scholar 

  12. Gorbach, S. L., T. W. Chang, and B. Goldin. 1987. Successful treatment of relapsing Clostridium difficile colitis with Lactobacillus GG. Lancet 2:1519.

    Google Scholar 

  13. Green, L. C., D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126:131–138.

    Google Scholar 

  14. Guarino, A., R. B. Canani, M. I. Spagnuolo, F. Albano, Di, and L. Benedetto. 1997. Oral bacterial therapy reduces the duration of symptoms and of viral excretion in children with mild diarrhea. J. Pediatr. Gastr. Nutr. 25:516–519.

    Google Scholar 

  15. Hattor, Y., K. Kasai, K. Akimoto, and C. Thiemermann. 1997. Induction of NO synthesis by lipoteichoic acid from Staphylococcus aureus in J774 macrophages: involvement of a CD14-dependent pathway. Biochem. Biophys. Res. Co. 233:375–379.

    Google Scholar 

  16. Hattori, Y., K. Kasai, N. Nakanishi, S. S. Gross, and C. Thiemermann. 1998. Induction of nitric oxide and tetrahydrobiopterin synthesis by lipoteichoic acid from Staphylococcus aureus in vascular smooth muscle cells. J. Vasc. Res. 35:104–108.

    Google Scholar 

  17. Hutcheson, I. R., B. J. Whittle, and N. K. Boughton-Smith. 1990. Role of nitric oxide in maintaining vascular integrity in endotoxininduced acute intestinal damage in the rat. Brit. J. Pharmacol. 101:815–820.

    Google Scholar 

  18. Isolauri, E., M. Juntunen, T. Rautanen, P. Sillanaukee, and T. Koivula. 1991. A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88:90–97.

    Google Scholar 

  19. Isolauri, E., H. Majamaa, T. Arvola, I. Rantala, E. Virtanen, and H. Arvilommi. 1993. Lactobacillus casei strain GG reverses increased intestinal permeability induced by cow milk in suckling rats. Gastroenterology 105:1643–1650.

    Google Scholar 

  20. Kaila, M., E. Isolauri, M. Saxelin, H. Arvilommi, and T. Vesikari. 1995. Viable versus inactivated lactobacillus strain GG in acute rotavirus diarrhoea. Arch. Dis. Child. 72:51–53.

    Google Scholar 

  21. Kaila, M., E. Isolauri, E. Soppi, E. Virtanen, S. Laine, and H Arvilommi. 1992. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatr. Res. 32:141–144.

    Google Scholar 

  22. Kengatharan, M., S. J. De Kimpe, and C. Thiemermann. 1996. Analysis of the signal transduction in the induction of nitric oxide synthase by lipoteichoic acid in macrophages. Brit. J. Pharmacol. 117:1163–1170.

    Google Scholar 

  23. Kennedy, M., A. G. Denenberg, C. Szabo, and A. L. Salzman. 1998. Poly(ADP-ribose) synthetase activation mediates increased permeability induced by peroxynitrite in Caco-2BBe cells. Gastroenterology 114:510–518.

    Google Scholar 

  24. Kosonen, O., H. Kankaanranta, P. Vuorinen, and E. Moilanen. 1997. Inhibition of human lymphocyte proliferation by nitric oxide-releasing oxatriazole derivatives. Eur. J. Pharmacol. 337:55–61.

    Google Scholar 

  25. Kubes, P., S. Kanwar, X. F. Niu, and J. P. Gaboury. 1993. Nitric oxide synthesis inhibition induces leukocyte adhesion via superoxide and mast cells. FASEB J. 7:1293–1299.

    Google Scholar 

  26. Lahde, M., R. Korhonen, and E. Moilanen. 2000. Regulation of nitric oxide production in cultured human T84 intestinal epithelial cells by nuclear factor-kappa B-dependent induction of inducible nitric oxide synthase after exposure to bacterial endotoxin. Aliment. Pharmacol. Ther. 14:945–954.

    Google Scholar 

  27. Lefer, A. M., and D. J. Lefer. 1999. Nitric oxide. II. Nitric oxide protects in intestinal inflammation. Am. J. Physiol. 276:G572–G575.

    Google Scholar 

  28. Lyons, C. R., G. J. Orloff, and J. M. Cunningham. 1992. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J. Biol. Chem. 267:6370–6374.

    Google Scholar 

  29. Mackendrick, W., M. Caplan, and W. Hsueh. 1993. Endogenous nitric oxide protects against platelet-activating factor-induced bowel injury in the rat. Pediatr. Res. 34:222–228.

    Google Scholar 

  30. Macmicking, J., Q. W. Xie, and C. Nathan. 1997. Nitric oxide and macrophage function. Ann. Rew. Immunol. 15:323-350.

    Google Scholar 

  31. Madsen, K. L., J. S. Doyle, L. D. Jewell, M. M. Tavernini, and R.N. Fedorak. 1999. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 116:1107–1114.

    Google Scholar 

  32. Mao, Y., S. Nobaek, B. Kasravi, D. Adawi, U. Stenram, Molin, and B. Jeppsson. 1996. The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology 111:334–344.

    Google Scholar 

  33. Masuda, E., S. Kawano, K. Nagano, S. Tsuji, Y. Takei, Tsujii, M. Oshita, T. Michida, I. Kobayashi, and A. Nakama. 1995. Endogenous nitric oxide modulates ethanol-induced gastric mucosal injury in rats. Gastroenterology 108:58–64.

    Google Scholar 

  34. McCafferty, D. M., J. S. Mudgett, M. G. Swain, and P. Kubes. 1997. Inducible nitric oxide synthase plays a critical role in resolving intestinal inflammation. Gastroenterology 112:1022–1027.

    Google Scholar 

  35. Miettinen, M., J. Vuopio-Varkila, and K. Varkila. 1996. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun. 64:5403–5405.

    Google Scholar 

  36. Moilanen, E., T. Moilanen, R. Knowles, I. Charles, Y. Kadoya, N. Alsaffar, P. A. Revell, and S. Moncada. 1997. Nitric oxide synthase is expressed in human macrophages during foreign body inflammation. Am. J. Pathol. 150:881–887.

    Google Scholar 

  37. Moilanen, E., and H. Vapaatalo. 1995. Nitric oxide inflammation and immune response. Ann. Med. 27:359–367.

    Google Scholar 

  38. Moncada, S., and E. A. Higgs. 1995. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 9:1319–1330.

    Google Scholar 

  39. Pant, A. R., S. M. Graham, S. J. Allen, S. Harikul, A. Sabchareon, L. Cuevas, and C. A. Hart. 1996. Lactobacillus GG and acute diarrhoea in young children in the tropics. J. Trop. Pediatrics 42:162–165.

    Google Scholar 

  40. Paul, A., K. Doherty, and R. Plevin. 1997. Differential regulation by protein kinase C isoforms of nitric oxide synthase induction in RAW 264.7 macrophages and rat aortic smooth muscle cells. Br. J. Pharmacol. 120:940–946.

    Google Scholar 

  41. Payne, D., and P. Kubes. 1993. Nitric oxide donors reduce the rise in reperfusion-induced intestinal mucosal permeability. Am. J. Physiol. 265:G189–G195.

    Google Scholar 

  42. Perdigon, G., M. E. De Macias, S. Alvarez, G. Oliver, R. De, and A. P. Holgado. 1988. Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus. Immunology 63:17–23.

    Google Scholar 

  43. Rachmilewitz, D., J. S. Stamler, D. Bachwich, F. Karmeli, Z. Ackerman, and D. K. Podolsky. 1995. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease. Gut 36:718–723.

    Google Scholar 

  44. Rautanen, T., E. Isolauri, E. Salo, and T. Vesikari. 1998. Management of acute diarrhoea with low osmolarity oral rehydration solutions and Lactobacillus strain GG. Arch. Dis. Child. 79:157–160.

    Google Scholar 

  45. Salvemini, D., E. Masini, A. Pistelli, P. F. Mannaionni, and J. Vane. 1991. Nitric oxide: A regulatory mediator of mast cell reactivity. J. Cardiovasc. Pharm. 17:S258–S264.

    Google Scholar 

  46. Saxelin, M., M. Elo, S. Salminen, and H. Vapaatalo. 1991. Dose response colonisation of faeces after oral administration of Lactobacillus casei strain GG. Microb. Ecol. Health Dis. 4:209-214.

    Google Scholar 

  47. Sheen, P., R. A. Oberhelman, R. H. Gilman, L. Cabrera, Verastegui, and G. Madico. 1995. Short report: a placebo-controlled study of Lactobacillus GG colonization in one-to-threeyear-old Peruvian children. Am. J. Trop. Med. Hyg. 52:389–392.

    Google Scholar 

  48. Shornikova, A. V., E. Isolauri, L. Burkanova, S. Lukovnikova, and T. Vesikari. 1997. A trial in the Karelian Republic of oral rehydration and Lactobacillus GG for treatment of acute diarrhoea. Acta Paediatr. 86:460–465.

    Google Scholar 

  49. Silva, M., N. V. Jacobus, C. Deneke, and S. L. Gorbach. 1987. Antimicrobial substance from a human Lactobacillus strain. Antimicrob. Agents Chemother. 31:1231–1233.

    Google Scholar 

  50. Simon, G. L., and S. L. Gorbach. 1986. The human intestinal microflora. Dic. Dis. Sci. 31:147S–162S.

    Google Scholar 

  51. Singer, I. I., D. W. Kawka, S. Scott, J. R. Weidner, R. A. Mumford, T. E. Riehl, and W. F. Stenson. 1996. Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology 111:871–885.

    Google Scholar 

  52. Tepperman, B. L., and B. J. Whittle. 1992. Endogenous nitric oxide and sensory neuropeptides interact in the modulation of the rat gastric microcirculation. Brit. J. Pharmacol. 105: 171–175.

    Google Scholar 

  53. Whittle, B. J., J. Lopez-Belmonte, and S. Moncada. 1990. Regulation of gastric mucosal integrity by endogenous nitric oxide: interactions with prostanoids and sensory neuropeptides in the rat. Brit. J. Pharmacol. 99:607–611.

    Google Scholar 

  54. Wong, H., W. D. Anderson, T. Cheng, and K. T. Riabowol. 1994. Monitoring mRNA expression by polymerase chain reaction: the “primer-dropping” method. Anal. Biochem. 223:251–258.

    Google Scholar 

  55. Xie, Q. W., Y. Kashiwabara, and C. Nathan. 1994. Role of transcription factor NF-kappa B ?Rel in induction of nitric oxide synthase. J. Biol. Chem. 269:4705–4708.

    Google Scholar 

  56. Yang, Z., T. Suomalainen, A. Mäyrä-Mäkinen, and E. Huttunen. 1997. Antimicrobial activity of 2-pyrrolidone-5-carboxylic acid produced by lactic acid bacteria. J. Food Protect. 60:1–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korhonen, R., Korpela, R., Saxelin, M. et al. Induction of Nitric Oxide Synthesis by Probiotic Lactobacillus rhamnosus GG in J774 Macrophages and Human T84 Intestinal Epithelial Cells. Inflammation 25, 223–232 (2001). https://doi.org/10.1023/A:1010971703271

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010971703271

Navigation