Skip to main content
Log in

Angiogenin and Its Functions in Angiogenesis

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The review is devoted to angiogenin, one of the factors that induce formation of blood vessels, which is unique in that it is a ribonuclease. Consideration is given to the tertiary structure of human angiogenin; the catalytic and cell receptor binding sites, their significance for angiogenic activity; the human angiogenin gene structure, chromosomal localization, and expression; the specificity of angiogenin as a ribonuclease and abolishment of protein synthesis; the nuclear localization of angiogenin in proliferating endothelial cells and its significance for angiogenic activity; angiogenin binding to cell surface actin as a plausible mechanism of inducing neovascularization (enhancement of plasminogen activation by actin, stimulation of the cell-associated proteolytic activity; promotion of the cultured cell invasiveness); modulation of mitogenic stimuli in endothelial, smooth muscle, and fibroblast cells by angiogenin. The importance of angiogenin as an adhesive molecule for endothelial and tumor cells is discussed too, as well as the modulation of tubular morphogenesis by bovine angiogenin, prevention of tumor growth in vivoby angiogenin antagonists, prospects of the use of angiogenin and angiogenin-encoding recombinant plasmids and vaccinia virus in therapeutic practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diazflores, L., Gutierrez, R., and Varela, H., Histol. Histopathol., 1994, vol. 9, pp. 807–843.

    Google Scholar 

  2. Strydom, D.J., Fett, J.W., Lobb, R.R., et al., Biochemistry, 1985, vol. 24, pp. 5486–5494.

    Google Scholar 

  3. Acharya, K.R., Shapiro, R., Allen, S., et al., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 2915–2919.

    Google Scholar 

  4. Shapiro, R., Riordan J.F., and Vallee, B.L., Biochemistry, 1986, vol. 25, pp. 3527–3532.

    Google Scholar 

  5. Harper, J.W. and Vallee, B.L., Biochemistry, 1989, vol. 28, pp. 1875–1884.

    Google Scholar 

  6. Lee, F.S. and Vallee, B.L., Biochem. Biophys. Res. Commun., 1989, vol. 161, pp. 121–126.

    Google Scholar 

  7. Shapiro, R. and Vallee, B.L., Biochemistry, 1989, vol. 28, pp. 7401–7408.

    Google Scholar 

  8. Shapiro, R., Fox, E.A., and Riordan, J.F., Biochemistry, 1989, vol. 28, pp. 1726–1732.

    Google Scholar 

  9. Shapiro, R. and Vallee, B.L., Biochemistry, 1992, vol. 31, pp. 12477–12485.

    Google Scholar 

  10. Curran, T.P., Shapiro, R., Riordan, J.F., and Vallee, B.L., Biochim. Biophys. Acta, 1993, vol. 1202, pp. 281–286.

    Google Scholar 

  11. Hallahan, T.W., Shapiro, R., and Vallee, B.L., Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 2222–2226.

    Google Scholar 

  12. Hallahan, T.W., Shapiro, R., Strydom, D.J., and Vallee, B.L., Biochemistry, 1992, vol. 31, pp. 8022–8029.

    Google Scholar 

  13. Richards, F.M. and Wyckoff, H.W., Enzymes, 1971, vol. 4, pp. 647–806.

    Google Scholar 

  14. Wodak, S.Y., Liu, M.Y., and Wyckoff, H.W., J. Mol. Biol., 1977, vol. 116, pp. 855–875.

    Google Scholar 

  15. Brünger, A.T., Brooks, C.L., and Karplus, M., Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 8458–8462.

    Google Scholar 

  16. Curran, T.P., Shapiro, R., and Riordan, J.F., Biochemistry, 1993, vol. 32, pp. 2307–2313.

    Google Scholar 

  17. Kurachi, K., Davie, E.W., Strydom, D.J., et al., Biochemistry, 1985, vol. 24, pp. 5494–5499.

    Google Scholar 

  18. Proudfoot, N.J. and Brownlee, G.G., Nature, 1976, vol. 263, pp. 211–214.

    Google Scholar 

  19. Berget, S.M., Nature, 1984, vol. 309, pp. 179–182.

    Google Scholar 

  20. Beintema, J.J., Schüller, C., Irie, M., and Carsana, A., Progr. Biophys. Mol. Biol., 1988, vol. 51, pp. 165–192.

    Google Scholar 

  21. Mount, S.M., Nucleic Acids Res., 1982, vol. 10, pp. 459–472.

    Google Scholar 

  22. Weremowicz, S., Fox, E.A., and Morton, C.C., Cytogenet. Cell Genet., 1989, vol. 51, pp. 1107.

    Google Scholar 

  23. Hamann, K.J., Ten, R.M., Loegering, D.A., et al., Genomics, 1990, vol. 7, pp. 535–546.

    Google Scholar 

  24. Fett, J.W., Strydom, D.J., Lobb, R.R., et al., Biochemistry, 1985, vol. 24, pp. 5480–5486.

    Google Scholar 

  25. Shapiro, R., Strydom, D.J., Olson, K.A., and Vallee, B.L., Biochemistry, 1987, vol. 26, pp. 5141–5146.

    Google Scholar 

  26. Weiner, H.L., Weiner, L.H., and Swain, J.L., Science, 1987, vol. 237, pp. 280–282.

    Google Scholar 

  27. Hobson, B. and Denekamp, J., Brit. J. Cancer, 1984, vol. 49, pp. 405–423.

    Google Scholar 

  28. Lee, D.C., Rochford, R., Todaro, C.J., and Villareal, L.P., Mol. Cell. Biol., 1985, vol. 5, pp. 3644–3646.

    Google Scholar 

  29. Shapiro, R. and Vallee, B.L., Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 2238–2241.

    Google Scholar 

  30. Widmann, J.J. and Fahimi, H.D., Am. J. Pathol., 1975, vol. 800, pp. 349–366.

    Google Scholar 

  31. Moenner, M., Gusse, M., Hatzl, E., and Badet, J., Eur. J. Biochem., 1994, vol. 226, pp. 483–490.

    Google Scholar 

  32. Harper, J.W. and Vallee, B.L., J. Protein Chem., 1988, vol. 7, pp. 355–363.

    Google Scholar 

  33. St. Clair, D.K., Rybak, S.M., Riordan, J.F., and Vallee, B.L., Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 8330–8334.

    Google Scholar 

  34. St. Clair, D.K., Rybak, S.M., Riordan, J.F., and Vallee, B.L., Biochemisry, 1988, vol. 27, pp. 7263–7268.

    Google Scholar 

  35. Moroianu, J. and Riordan, J.F., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 1677–1681.

    Google Scholar 

  36. Badet, J., Soncin, F., Guitton, J.-D., et al., Proc. Natl. Acad. USA, 1989, vol. 86, pp. 8427–8431.

    Google Scholar 

  37. Garcia-Bustos, J., Heitman, J., and Hall, M.N., Biochim. Biophys. Acta, 1991, vol. 1071, pp. 83–101.

    Google Scholar 

  38. Hu, G.-F., Chang, S.-J., Riordan, J.F., and Vallee, B.L., Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 2227–2231.

    Google Scholar 

  39. Hu, G.-F., Strydom, D.J., Fett, J.W., et al., Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 1217–1221.

    Google Scholar 

  40. Pardridge, W.M., Nowlin, D.M., Choi, T.B., et al., J. Cereb. Blood Flow Metab., 1989, vol. 9, pp. 675–680.

    Google Scholar 

  41. Werb, Z., Mainardi, C.L., Vater, C.A., and Harris, E.D., New Engl. J. Med., 1977, vol. 296, pp. 1017–1023.

    Google Scholar 

  42. Glaser, B.M., Kalebic, T., Garlisa, S., et al., Development of the Vascular System, London: Pitman, 1983, pp. 150–162.

    Google Scholar 

  43. Hu, G.-F. and Riordan, J.F., Biochem. Biophys. Res. Commun., 1993, vol. 197, pp. 682–687.

    Google Scholar 

  44. Hu, G.-F., Riordan, J.F., and Vallee, B.L., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 12096–12100.

    Google Scholar 

  45. Heath, W.F., Moore, F., Bicknell, R., and Vallee, B.L., Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 2718–2722.

    Google Scholar 

  46. Bicknell, R. and Vallee, B.L., Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 5961–5965.

    Google Scholar 

  47. Bläser, J., Triebl, S., Kopp, C., and Tschesche, H., Eur. J. Clin. Chem. Clin. Biochem., 1993, vol. 31, pp. 513–516.

    Google Scholar 

  48. Shimoyama, S., Gansauge, F., Gansauge, S., et al., Cancer Res., 1996, vol. 56, pp. 2703–2706.

    Google Scholar 

  49. Berridge, M.J. and Irvine, R.F., Nature, 1984, vol. 312, pp. 315–321.

    Google Scholar 

  50. Lambert, T.L., Kent, R.S., and Whorton, A.R., J. Biol. Chem., 1986, vol. 261, pp. 5288–5293.

    Google Scholar 

  51. Coughlin, S.R., Lee, W.M.F., Williams, P.W., et al., Cell, 1985, vol. 43, pp. 243–251.

    Google Scholar 

  52. Hu, G.-F., Riordan, J.F., and Vallee, B.L., Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 2204–2209.

    Google Scholar 

  53. Matuoka, K., Fukami, K., Nakanishi, O., et al., Science, 1988, vol. 239, pp. 640–643.

    Google Scholar 

  54. Ruoslahti, E. and Pierschbacher, M.D., Science, 1987, vol. 238, pp. 491–497.

    Google Scholar 

  55. Jaffe, E.A. and Mosher, D.F., J. Exp. Med., 1978, vol. 147, pp. 1779–1791.

    Google Scholar 

  56. Gospodarowicz, D., Greenberg, G., Foidart, J.M., and Savion, N., J. Cell. Physiol., 1981, vol. 107, pp. 171–183.

    Google Scholar 

  57. Kenney, M.C., Benya, P.D., Nimni, M.E., and Smith, R.E., Exp. Eye Res., 1981, vol. 33, pp. 131–140.

    Google Scholar 

  58. Madri, J.A., Pratt, B.M., and Yannariello-Brown, J., Am. J. Pathol., 1988, vol. 132, pp. 18–27.

    Google Scholar 

  59. Soncin, F., Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 2232–2236.

    Google Scholar 

  60. Ruoslahti, E., J. Clin. Invest., 1991, vol. 87, pp. 1–5.

    Google Scholar 

  61. Bond, M.D. and Strydom, D.J., Biochemistry, 1989, vol. 28, pp. 6110–6113.

    Google Scholar 

  62. Good, D.J., Polverini, R.J., Rastinejad, F., et al., Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 6624–6628.

    Google Scholar 

  63. Taraboletti, G., Roberts, D., Liotta, L. A., and Giavazzi, R., J. Cell. Biol., 1990, vol. 111, pp. 765–772.

    Google Scholar 

  64. Olson, K.A., French, T.C., Vallee, B.L., and Fett, J.M., Cancer Res., 1994, vol. 54, pp. 4576–4579.

    Google Scholar 

  65. Soncin, F., Shapiro, R., and Fett, J.W., J. Biol. Chem., 1994, vol. 269, pp. 8999–9005.

    Google Scholar 

  66. Schwartz, N.B., J. Biol. Chem., 1977, vol. 18, pp. 6316–6321.

    Google Scholar 

  67. Jimi, S-i., Ito, K-i., Kohno, K., et al., Bichem. Biophys. Res. Commun., 1995, vol. 211, pp. 476–483.

    Google Scholar 

  68. Moore, J.V. and West, D.C., Int. J. Radiat. Biol., 1991, vol. 60, pp. 1–421.

    Google Scholar 

  69. Olson, K.A., Fett, J.W., French, T.C., et al., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 442–446.

    Google Scholar 

  70. Fett, J.W., Olson, K.A., and Rybak, S.M., Biochemistry, 1994, vol. 33, pp. 5421–5427.

    Google Scholar 

  71. Gho, Y.S., Lee, J.F., Oh, K.S., et al., Cancer Res., 1997, vol. 57, pp. 3733–3740.

    Google Scholar 

  72. Lee, W.M. and Galbraith, R.M., New Eng. J. Med., 1992, vol. 326, pp. 1335–1341.

    Google Scholar 

  73. Blackburn, P., Wilson, G., and Moore, S., J. Biol. Chem., 1977, vol. 252, pp. 5904–5910.

    Google Scholar 

  74. Burton, L.E., Blackburn, P., and Moore, S., Int. J. Peptide Protein Res., 1980, vol. 16, pp. 359–364.

    Google Scholar 

  75. Turner, P.M., Lerea, K.M., and Kull, F.J., Biochem. Biophys. Res. Commun., 1993, vol. 114, pp. 1154–1160.

    Google Scholar 

  76. Aoki, Y. and Natori, S., Biochem. J., 1981, vol. 196, pp. 699–703.

    Google Scholar 

  77. Kraft, N. and Shortman, K., Biochim. Biophys. Acta, 1970, vol. 217, pp. 164–175.

    Google Scholar 

  78. Fox, E.A. and Riordan, J.F., Molecular Biology of the Cardiovascular System, Chen, S., Ed., Philadelphia: Lea and Febiger, 1990, pp. 139–154.

    Google Scholar 

  79. Feldman, M., Kontz, D.C., and Kleinberg, D.L., Biochem. Biophys. Res. Commun., 1988, vol. 157, pp. 286–294.

    Google Scholar 

  80. Nadano, D., Yasudo, T., Takeshita, H., and Kishi, K., Int. J. Biochem. Cell Biol., 1995, vol. 27, pp. 971–979.

    Google Scholar 

  81. Hu, G.-F., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 9791–9795.

    Google Scholar 

  82. Lee, J. and Feldman, A.M., Nature Med., 1998, vol. 4, pp. 739–742.

    Google Scholar 

  83. Bauters, C.B., Takayuki, A., Zheng, L.P., et al., J. Vasc. Surg., 1995, vol. 21, pp. 314–325.

    Google Scholar 

  84. Takeshita, S., Zheng, L.P., Brogi, E., et al., J. Clin. Invest., 1994, vol. 93, pp. 662–670.

    Google Scholar 

  85. Takeshita, S., Pu, L.Q., Sniderman, A.D., et al., Circulation, 1994, vol. 90, pp. 228–234.

    Google Scholar 

  86. Takeshita, S., Weir, L., Chen, D., et al., Biochem. Biophys. Res. Commun., 1996, vol. 227, pp. 628–635.

    Google Scholar 

  87. Isner, J.M., Pieczek, A., Schaifeld, R., et al., Lancet, 1996, vol. 348, pp. 370–374.

    Google Scholar 

  88. Baumgartner, J., Pieczek, A., Manor, O., et al., Circulation, 1998, vol. 97, pp. 1114–1123.

    Google Scholar 

  89. Banai, S., Jaklitsch, M.T., Shou, M., et al., Circulation, 1994, vol. 89, pp. 2183–2189.

    Google Scholar 

  90. Henry, T.D., Rochasingh, K., Isner, J.M., et al., J. Am. Coll. Card., 1998, vol. 31, p. 65A.

    Google Scholar 

  91. Unger, E.F., Banai, S., Shou, M., et al., Am. J. Physiol., 1994, vol. 266, pp. H1588–1595.

    Google Scholar 

  92. Lazarous, D.F., Scheinowitz, M., Shou, M., et al., Circulation, 1995, vol. 91, pp. 145–153.

    Google Scholar 

  93. Schumacher, B., Pecher, P., von Specht, B.U., and Stegmann, Th., Circulation, 1998, vol. 97, pp. 645–650.

    Google Scholar 

  94. Mertvetsov, N.P., Izv. Akad. Nauk, Ser. Khim., 1996, no. 12, pp. 2837–2846.

    Google Scholar 

  95. Burleva, E.P., Mertvetsov, N.P., Krokhina, N.B., and Brodskaya, I.B., Abstracts of Papers, 3rd Ann. Sess. Bakulev Cardiovasc. Res. Center with All-Russ. Conf. Young Res., Moscow, 1999, p. 117.

  96. Mertvetsov, N.P. and Stefanovich, L.E., Angiogenin i mekhanizm angiogeneza (Angiogenin and the Mechanism of Angiogenesis), Novosibirsk, 1997.

  97. Hu, G.-F., J. Protein Chem., 1997, vol. 16, pp. 669–679.

    Google Scholar 

References to Addendum

  1. Netesova, N.A., Petrov, V.S., Cheshenko, N.V., et al., Bioorg. Khim., 1995, vol. 21, pp. 608–611.

    Google Scholar 

  2. Kislykh, V.I., Ramazanov, Yu.A., Maistrenko, V.F., and Mertvetsov, N.P., Biotekhnologiya, 2000, no. 4, pp. 72–79.

  3. Mertvetsov, N.P., Norkina, O.V., Maistrenko, V.F., et al., Bioorg. Khim., 2000 (in press).

  4. Blaese, M. et al., Cancer Gene Ther., 1995, no. 2, pp. 291–297.

    Google Scholar 

  5. Wadman, M., Nature, 1998, vol. 292, p. 317.

    Google Scholar 

  6. Robbins, P.D. et al., Trends Biotechnol., 1998, vol. 16, pp. 35–40.

    Google Scholar 

  7. Carter, B.J., Biotechnology, 2nd ed., Mountain, A. et al., Eds., Wiley-VCH, 1999, pp. 395–426.

  8. Weir, N., Biotechnology, 2nd ed., Mountain, A. et al., Eds., Wiley-VCH, 1999, pp. 427–442.

  9. Baumgartner, I. et al., Circulation, 1998, vol. 97, pp. 1114–1123.

    Google Scholar 

  10. Mertvetsov, N.P., Tarantul, V.Z., Dudarev, A.N., et al., Biotekhnologiya, 2000 (in press).

  11. Lazarous, D.F., Shou, M., Scheinowitz, M., et al., Circulation, 1996, vol. 92, pp. 1074–1082.

    Google Scholar 

  12. Lazarous, D.F., Scheinowitz, M., Shou, M., et al., Circulation, 1995, vol. 91, pp. 145–153.

    Google Scholar 

  13. Banai, S., Jaklitsch, M.T., Casscells, W., et al., Circ. Res., 1991, vol. 69, pp. 76–85.

    Google Scholar 

  14. Banai, S., Shou, M., Correa, R., et al., Circ. Res., 1991, vol. 69, pp. 748–756.

    Google Scholar 

  15. Barath, P., Jakubowski, A.T., Cao, J., et al., Circulation, 1988, vol. 78, suppl. II, p. II-57.

    Google Scholar 

  16. Battler, A., Scheinowitz, M., Bor, A., et al., J. Am. Coll. Cardiol., 1992, vol. 19, suppl. A, p.117A.

    Google Scholar 

  17. Cuevas, P., Carceller, F., Ortega, S., et al., Science, 1991, vol. 254, pp. 1208–1210.

    Google Scholar 

  18. Klagsburn, M., Progr. Growth Factor Res., 1989, vol. 1, pp. 207–235.

    Google Scholar 

  19. Schaper, W., Sharma, H.S., Quinkler, W., et al., J. Am. Coll. Cardiol., 1990, vol. 15, pp. 513–518.

    Google Scholar 

  20. Thompson, S.A., Protter, A.A., Bitting, L., Fiddes, J.C., and Abraham, J.A., Meth. Enzymol., 1990, pp. 96–116.

  21. Vlodavsky, I., Fuks, Z., Ishai-Michaeli, R., et al., J. Cell. Biochem., 1991, vol. 45, pp. 167–176.

    Google Scholar 

  22. Ziada, A.M., Hudlicka, O., Tyler, K.R., and Wright, A.J., Cardiovasc. Res., 1984, vol. 18, pp. 724–732.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shestenko, O.P., Nikonov, S.D. & Mertvetsov, N.P. Angiogenin and Its Functions in Angiogenesis. Molecular Biology 35, 294–314 (2001). https://doi.org/10.1023/A:1010450023203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010450023203

Navigation