Skip to main content
Log in

A Novel Thermo-Optical Measuring System for the in situ Study of Sintering Processes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel thermo-optical measuring system (TOM) is described, which is able to monitor simultaneously and in situ thermal and optical properties of materials during the process of sintering. These are thermal diffusivity, heat capacity, thermal conductivity, transfer of heat radiation and scattering of light. Additionally, the geometric shrinkage is recorded by a non-contact optical dilatometer. The system has been designed for an efficient optimization of time-temperature-atmosphere cycles in sintering processes. Therefore, in the construction of the TOM system transferability of process parameters to other sintering furnaces is an important requirement. Due to this, compromises have been necessary in the layout of the measuring methods. Nevertheless, a high resolution was achieved for the distinction of different sintering states. Besides dilatometry, thermal diffusivity measurement by a laser-flash technique is a promising tool for the in situ monitoring of changes in microstructure during sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Thümmler, Wissenschaft und Praxis, 5 (1989) 261.

    Google Scholar 

  2. S. Winkler, P. Davies and J. Janoschek, J. Thermal Anal., 40 (1993) 999.

    CAS  Google Scholar 

  3. H. Palmour, Sci. Sintering, 7 (1989) 367.

    Google Scholar 

  4. P. Komarenko and R. W. Messler, Int. J. Powder Metall., 30 (1994) 67.

    CAS  Google Scholar 

  5. M. L. Lyamshev, J. Stanullo and G. Busse, Materialprüfung, 37 (1995) 1.

    Google Scholar 

  6. W. J. Parker et al., J. Appl. Phys., 32 (1961) 1679.

    Article  CAS  Google Scholar 

  7. R. Enck and R. D. Harris, Mat. Res. Soc. Symp. Proc., 167 (1990) 235.

    CAS  Google Scholar 

  8. M. Güther and H.-J. Sölter, Apparat und Verfahren zur Tempareturleitfähigkeitsmessung, Patent DE 4131040, 1995.

  9. D. P. H. Hasselmann, R. Syed and T.-Y. Tien, J. Mat. Science, 20 (1985) 2549.

    Article  Google Scholar 

  10. D. P. H. Hasselmann, L. J. Johnson, L. D. Bentsen, R. Syed. H. L. Lee and M. V. Swain, Am. Ceram Soc. Bull., 66 (1987) 799.

    Google Scholar 

  11. M. J. Wheeler, Brit. J. Appl. Phys., 16 (1965) 365.

    Article  CAS  Google Scholar 

  12. A. G. Shashkov, S. Yu Yanovskii and T. N. Abramenko, High. Temp.-High Press., 16 (1984) 93.

    Google Scholar 

  13. H.-J. Sölter, Das Laserpulsverfahren zur simultanen Bestimmung der Temperatur-und Wärmeleitfähigkeit von Zweischichtsystemen: Vergleich von Auswertungsformalismen und Untersuchungen an plasmagespritzten Schichten, Dissertation, Universität Stuttgart 1990. IKE-5-231, ISSN 0173-6892.

  14. R. A. Nyquist and R. O. Kagel, Infrared Spectra of Inorganic Compounds, Academic Press, San Diego 1971.

    Google Scholar 

  15. W. W. Chen and B. Dunn, J. Am. Ceram. Soc., 76 (1993) 2086.

    Article  CAS  Google Scholar 

  16. S. Meyer, Apparatur zur Messung von kohärenter Laserlichtstreuung, Diplomarbeit, Fachhochschule Gießen-Friedberg and Fraunhofer-Institut für Silicatforschung, Würzburg 1996.

    Google Scholar 

  17. M. Pfeffer, Programmierbarer Gasmischer, Diplomarbeit, Fachhoshschule Gießen-Friedberg and Fraunhofer-Institut für Silicatforschung, Würzburg 1996.

    Google Scholar 

  18. G. Neubert, Aufbau eines pneumatischen Positioniersystems mit Mikrocontroller-Steuerung, Diplomarbeit, sFachhochschule Würzburg-Schweinfurt and Fraunhofer-Institut für Silicatforschung, Würzburg 1994.

    Google Scholar 

  19. M. E. R. Shanahan, J. Chem. Soc., Faraday Trans. 1,80 (1984) 37.

    Google Scholar 

  20. M. P. Borom and C. A. Johnson, Surf. Coat. Technol., 54–55 (1992) 45.

    Article  CAS  Google Scholar 

  21. H. S. Carlslaw and J. C. Jaeger, The conduction of heat in solids, Oxford Univ. Press, Oxford 1976, p. 118.

    Google Scholar 

  22. R. C. Heckman, J. Appl. Phys., 44 (1973) 1455.

    Article  Google Scholar 

  23. O. Hahn, F. Raether, M. C. Arduini-Schuster and J. Fricke, Int. J. Heat and Mass transfer, (1995).

  24. N. Grimm, G. E. Scott and J. D. Sibold, Ceramic Bull., 50 (1971) 962.

    CAS  Google Scholar 

  25. A. C. Tam and H. Sontag, Applied Phys. Letters, 49 (1986) 1761.

    Article  CAS  Google Scholar 

  26. I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim 1989.

    Google Scholar 

  27. W. F. Hemminger and H. K. Cammenga, Methoden der termischen Analyse, Springer, Berlin 1989.

    Google Scholar 

  28. U. Grigull and H. Sandner, Wärmeleitung, Springer-Verlag, Berlin 1990.

    Google Scholar 

  29. F. Raether and G. Müller, New in situ measuring methods for the optimization of sintering processes, Proceedings IV ECerS-Tagung, Riccione, Italy (1995) 103–112.

  30. G. A. Slack, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids, 34 (1973) 321–335.

    Article  CAS  Google Scholar 

  31. A. J. Walter, R. M. Dell and P. C. Burgess, Rev. Int. Hautes Temp., Refract. 7 (1970) 271.

    CAS  Google Scholar 

  32. W. H. Gitzen, Alumina as a Ceramic material, American Ceramic Society Inc., Columbus/Ohio 1970, p. 66.

    Google Scholar 

  33. O. Hahn, F. Raether and J. Fricke, Heat transfer at particle contacts in the presence of gases and/or liquid secondary phases, submitted to Int. J. of Thermophysics (1996).

  34. Y. Ogniewicz and M. M. Yovanovich, Effective conductivity of regularly packed spheres: basic cell model with constrictions. Prog. Astronaut. Aeronaut., 60 (1978) 209.

    CAS  Google Scholar 

  35. G. Ondracek, J. of Materials Technology, 5 (1974) 416.

    CAS  Google Scholar 

  36. D. Uskokovic, The kinetics of Contact Formation during sintering by diffusion mechanisms, Science of Sintering, 9(3) (1977) 265.

    CAS  Google Scholar 

  37. G. A. Slack, R. A. Tanzilli, R. O. Pohl and J. W. Vandersande: The intrinsic thermal conductivity of AIN, J. Phys. Chem. Solids, 48 (1987) 641.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raether, F., Hofmann, R., Müller, G. et al. A Novel Thermo-Optical Measuring System for the in situ Study of Sintering Processes. Journal of Thermal Analysis and Calorimetry 53, 717–735 (1998). https://doi.org/10.1023/A:1010111023658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010111023658

Navigation