Skip to main content
Log in

Streptococcal integration vectors for gene inactivation and cloning

  • Published:
Methods in Cell Science

Abstract

Five streptococcal integration vectors containing different antibiotic resistance-encoding genes capable of expressing in both Streptococcus sp. and Escherichia coli are introduced. These plasmids can replicate in E. coli, but not in streptococci, because the plasmids lack a streptococcal origin of replication. If these plasmids carry a fragment of streptococcal DNA they can specifically integrate into the streptococcal chromosome via Campbell-like, single crossover homologous recombination. Methods are described to use these vectors for gene inactivation and cloning in streptococci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barletta RG, Michalek SM, Curtiss III R (1988). Analysis of the virulence of Streptococcus mutans serotype c gtfA mutants in the rat model system. Infect Immun 56: 322–330.

    Google Scholar 

  2. Berry AM, Lock RA, Hansman D, Paton JC (1989). Contribution of autolysin to virulence of Streptococcus pneumoniae. Infect Immun 57: 2324–2330.

    Google Scholar 

  3. Chung CT, Niemela SL, Miller RH (1989). One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86: 2172–2175.

    Google Scholar 

  4. Clavery JP, Dintilhac A, Pestova EV, Martin B, Morrison DA (1995). Construction and evaluation of new drug-resistance cassettes for gene disruption and mutagenesis in Streptococcus pneumoniae, using an ami test platform. Gene 164: 123–128.

    Google Scholar 

  5. Colby SM, Whiting GC, Tao L, Russell RRB (1995). Insertional inactivation of the Streptococcus mutans dexA (dextranase) gene results in altered adherence and dextran catabolism. Microbiology 141: 2929–2936.

    Google Scholar 

  6. Dunny GM, Lee LN, LeBlanc DJ (1989). Improved electroporation and cloning vector system for Gram-positive bacteria. Appl Environ Microbiol 57: 1194–1201.

    Google Scholar 

  7. Leenhouts KJ, Kok J, Venema G (1991). Replacement recombination in Lactococcus lactis. J Bacteriol 173: 4794–4798.

    Google Scholar 

  8. Macrina FL, Evans RP, Tobian JA, et al. (1983). Novel shuttle plasmid vehicles for Escherichia-Streptococcus transgeneric cloning. Gene 25: 145–150.

    Google Scholar 

  9. Maniatis T, Fritsch EF, Sambrook J (1982). Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  10. Mejean V, Claverys JP, Vasseghi H, Sicard AM (1981). Rapid cloning of specific DNA fragments of Streptococcus pneumoniae by vector integration into the chromosome followed by endonucleolytic excision. Gene 15: 289–293.

    Google Scholar 

  11. Morrison DA, Trombe MC, Hayden MK, Waszak GA, Chen JD (1984). Isolation of transformation-deficient Streptococcus pneumoniae mutants defective in control of competence, using insertion-duplication mutagenesis with the erythromycin resistance determinant of pAMβ1. J Bacteriol 159: 870–876.

    Google Scholar 

  12. Munro C, Michalek SM, Macrina FL (1991). Cariogenicity of Streptococcus mutans V403 glucosyltransferase and fructosyltransferase mutants constructed by allelic exchange. Infect Immun 59: 2316–2323.

    Google Scholar 

  13. Perry D, Kuramitsu HK (1989). Genetic linkage among cloned genes of Streptococcus mutans. Infect Immun 57: 805–809.

    Google Scholar 

  14. Perry D, Kuramitsu HK (1990). Linkage of sucrosemetabolizing genes in Streptococcus mutans. Infect Immun 58: 3462–3464.

    Google Scholar 

  15. Perry D, Nilsen LJ, Kuramitsu HK (1985). Mapping of a cloned glucosyltransferase gene in Streptococcus mutans. Infect Immun 50: 130–135.

    Google Scholar 

  16. Simon D, Ferretti JJ (1991). Electrotransformation of Streptococcus progenes with plasmid and linear DNA. FEMS Microbiol Lett 82: 219–224.

    Google Scholar 

  17. Tao L, LeBlanc DJ, Ferretti JJ (1992). Novel streptococcal-integration shuttle vectors for gene cloning and inactivation. Gene 120: 105–110.

    Google Scholar 

  18. Tao L, Sutcliffe IC, Russell RRB, Ferretti JJ (1993). Cloning and expression of the multiple sugar metabolism (msm) operon of Streptococcus mutans in heterologous streptococcal hosts. Infect Immun 61: 1121–1125.

    Google Scholar 

  19. Tao L, Tanzer JM, Kuramitsu HK, Das A (1993). Identification of several rod loci and cloning of the rodD locus of Streptococcus mutans. Gene 126: 123–128.

    Google Scholar 

  20. Tao L, Hollingshead SK, Suvorov AN, Ferretti JJ, McShan WM (1995). Construction of a Streptococcus pyogenes recA mutant via insertional inactivation, and cloning and sequencing of the complete recA gene. Gene 162: 59–62.

    Google Scholar 

  21. Vijayakumar MN, Priebe SD, Pozzi G, Hageman JM, Guild WR (1986). Cloning and physical characterization of chromosomal conjugative elements in streptococci. J Bacteriol 166: 972–977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, L. Streptococcal integration vectors for gene inactivation and cloning. Methods Cell Sci 20, 59–64 (1998). https://doi.org/10.1023/A:1009756819641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009756819641

Navigation