Skip to main content
Log in

The Potentials of Pulsed Field Gradient NMR for Investigation of Porous Media

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

PFG NMR self-diffusion studies provide information on the translational mobility of fluid molecules. Since in porous media the diffusion path of fluid molecules in the pore space is affected by interaction with the pore wall, PFG NMR measurements are sensitive to structural peculiarities of the confining porous medium. The pore space properties which can be investigated depend on length scales set by the PFG NMR experiment in respect to the typical size of the structural feature studied. Based upon these length scales, an interpretation pattern for PFG NMR self-diffusion studies in porous media is given. PFG NMR self-diffusion studies in macro- and microporous systems such as sedimentary rocks and zeolite crystallites, respectively, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bär, N.-K., S. Ernst, J. Kärger, H.B. Schwarz, and J. Weitkamp, “Influence of Intracrystalline Confinement on Pulsed Field Gradient NMR Diffusion Studies with Zeolite Crystallites of Finite Size,” Microporous Mater., 6, 355–361 (1996).

    Google Scholar 

  • Bär, N.-K., J. Kärger, H. Pfeifer, H. Schäfer, and W. Schmitz, “Diffusion Anisotropy in Natural Chabasite,” Micropor. Mesopor. Mat., 22, 289–295 (1998).

    Google Scholar 

  • Bear, J., Dynamics of Fluids in Porous Media, American Elsevier Publishing Company, New York, 1972.

    Google Scholar 

  • Brandani, S., D.M. Ruthven, and J. Kärger, “Concentration Dependence of Self-Diffusivity of Methanol in NaX Zeolite Crystals,” Zeolites, 15, 494–495 (1995).

    Article  Google Scholar 

  • Brownstein, K.R. and C.E. Tarr, “Importance of Classical Diffusion in NMR Studies of Water in Biological Cells,” Phys. Rev. A, 19, 2446–2453 (1979).

    Google Scholar 

  • Callaghan, P.T., Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford, 1991.

    Google Scholar 

  • Callaghan, P.T., D. MacGowan, K.J. Packer, and F.O. Zelaya, “Influence of Field Gradient Strength in NMR Studies of Diffusion in Porous Media,” Magn. Reson. Imaging, 9, 663–671 (1991).

    Google Scholar 

  • Callaghan, P.T., “Pulsed-Gradient Spin-Echo NMR for Planar, Cylindric, and Spherical Pores Under Conditions of Wall Relaxation,” J. Magn. Reson. A, 113, 53–59 (1995).

    Google Scholar 

  • Caro, J., M. Bülow, W. Schirmer, J. Kärger, W. Heink, H. Pfeifer, and S.P. Zhdanov, “Microdynamics of Methane, Ethane and Propane in ZSM-5 Type Zeolites,” J.C.S. Faraday I, 81, 2541–2550 (1985).

    Google Scholar 

  • Caro, J., M. Noack, J. Richter-Mendau, F. Marlow, D. Petersohn, M. Griepentrog, and J. Kornatowski, “Selective Sorption Uptake Kinetics of n-hexane on ZSM-5—A New Method for Measuring Anisotropic Diffusivities,” J. Phys. Chem., 97, 13685–13690 (1993).

    Google Scholar 

  • Cavalcante, C.L., S. Brandani, and D.M. Ruthven, “Evaluation of the Main Diffusion Path in Zeolites from ZLC Desorption Curves,” Zeolites, 18, 282–285 (1997).

    Google Scholar 

  • Chen, N.Y., T.F. Degnan, and C.M. Smith, Molecular Transport and Reaction in Zeolites, VCH, New York, 1994.

    Google Scholar 

  • Fordham, E.J., S.J. Gibbs, and L.D. Hall, “Partially Restricted Diffusion in a Permeable Sandstone: Observations by Stimulated Echo PFG NMR,” Magn. Reson. Imaging, 12, 279–284 (1994).

    PubMed  Google Scholar 

  • Förste, Ch., A. Germanus, J. Kärger, G. Möbius, M. Bülow, S.P. Zhdanov, and N.N. Feoktistova, “Einsatz von deuterierten Molekülen zur Bestimmung von Selbstdiffusions koeffizienten bei der Zweikomponentenadsorption in Zeolithen unter Anwendung der NMR-Meßtechnik,” Isotopenpraxis, 25, 48–52 (1989).

    Google Scholar 

  • Gallegos, D.P. and D.M. Smith, “A NMR Technique for the Analysis of Pore Structure: Determination of Continuous Pore Size Distributions,” J. Colloid Interface Sci., 122, 143–153 (1988).

    Google Scholar 

  • Germanus, A., J. Kärger, H. Pfeifer, N.N. Samulevich, and S.P. Zhdanov, “Intracrystalline Self-Diffusion of Benzene, Toluene and Xylene Isomeres in Zeolites NaX,” Zeolites, 5, 91–95 (1985).

    Google Scholar 

  • Heink, W., J. Kärger, S. Ernst, and J. Weitkamp, “PFG NMR Study of the Influence of the Exchangeable Cations on the Self-Diffusion of Hydrocarbons in Zeolites,” Zeolites, 14, 320–325 (1994).

    Google Scholar 

  • Hong, U., J. Kärger, R. Kramer, H. Pfeifer, G. Seiffert, U. Müller, K.K. Unger, H.B. Lück, and T. Ito, “PFG NMR Study of Diffusion Anisotropy in Oriented ZSM-5 Type Zeolite Crystallites,” Zeolites, 11, 816–821 (1991a).

    Google Scholar 

  • Hong, U., J. Kärger, H. Pfeifer, U. Müller, and K.K. Unger, “Observing Diffusion Anisotropy in Zeolites by Pulsed Field Gradient NMR,” Z. Phys. Chem., 173, 225–234 (1991b).

    Google Scholar 

  • Hong, U., J. Kärger, and H. Pfeifer, “Selective Two-Component Self-Diffusion Measurement of Adsorbed Molecules by Pulsed Field Gradient Fourier Transform NMR,” J. Am. Chem. Soc., 113, 4812–4915 (1991c).

    Google Scholar 

  • Hong, U., J. Kärger, B. Hunger, N.N. Feoktistova, and S.P. Zhdanov, “In situ Measurement of Molecular Diffusion During Catalytic Reaction by Pulsed Field Gradient Spectroscopy,” J. Catal., 137, 243–251 (1992).

    Google Scholar 

  • Hürlimann, M.D., L.L. Latour, and C.H. Sotak, “Diffusion Measurement in Sandstone Core: NMR Determination of Surface-to-Volume Ratio and Surface Relaxivity,” Magn. Reson. Imaging, 12, 325–327 (1994).

    PubMed  Google Scholar 

  • Jobic, H., J. Kärger, and M. Bee, “Simultaneous Measurement of Self and Transport Diffusion in Zeolites,” Phys. Rev. Letts. 1999, in press.

  • Kärger, J. and P. Volkmer, “Comparison of Predicted and Nuclear Magnetic Resonance Zeolitic Diffusion Coefficients,” J.C.S. Faraday I, 76, 1562–1568 (1980).

    Google Scholar 

  • Kärger, J., H. Pfeifer, M. Rauscher, and A. Walter, “Self-Diffusion of n-paraffins in NaX Zeolite,” J.C.S. Faraday I, 76, 717–737 (1980).

    Google Scholar 

  • Kärger, J. and W. Heink, “The Propagator Representation of Molecular Transport in Microporous Crystallites,” J. Magn. Reson., 51, 1–7 (1983).

    Google Scholar 

  • Kärger, J., H. Pfeifer, and W. Heink, “Principles and Application of Self-Diffusion Measurements by NMR,” Adv. Magn. Reson., 12, 1–89 (1988).

    Google Scholar 

  • Kärger, J., H. Pfeifer, F. Stallmach, and H. Spindler,” 129Xe NMR Self-Diffusion Measurements—A Novel Method to Probe Diffusional Barriers on the External Surface of Zeolite Crystallites,” Zeolites, 10, 288–292 (1990).

    Google Scholar 

  • Kärger, J., “Random Walk Through Two-Channel Networks: A Simple Means to Correlate the Coefficients of Anisotropic Diffusion in ZSM-5 Type Zeolites,” J. Phys. Chem., 95, 5558–5560 (1991).

    Google Scholar 

  • Kärger, J. and M.D. Ruthven, Diffusion in Zeolites and Other Microporous Solids, Wiley-Interscience, New York, 1992.

    Google Scholar 

  • Kärger, J. and H. Pfeifer, “On the Interdependence of the Principal Values of the Diffusion Tensor in Zeolites with Channel Networks,” Zeolites, 12, 872–873 (1992).

    Google Scholar 

  • Kärger, J., G. Seiffert, and F. Stallmach, “Space-and Time-Dependent PFG NMR Self-Diffusion Measurements in Zeolites” J. Magn. Reson. A, 102, 327–331 (1993).

    Google Scholar 

  • Kärger, J., N.-K. Bär, W. Heink, H. Pfeifer, and G. Seiffert, “On the Use of Pulsed Field Gradients in a High-Field NMR Spectrometer to Study Restricted Diffusion in Zeolites,” Z. Naturforschung., 50a, 186–190 (1995).

    Google Scholar 

  • Kärger, J. and D.M. Ruthven, “Self-Diffusion and Diffusive Transport in Zeolite Crystals,” Progress in Zeolite and Microporous Materials, H. Chon, S.-K. Ihm, and Y.S. Uh (Eds.), Stud. Surf. Sci. Catal., vol. 105, pp. 1843–1851 Elsevier Sci. B.V., 1997.

  • Kenyon, W.E., “Nuclear Magnetic Resonance as a Petrophysical Measurement,” Nuclear Geophysics, 6, 153–171 (1992).

    Google Scholar 

  • Kimmich, R., NMR Tomography, Diffusimetry and Relaxometry, Springer, Berlin, 1997.

    Google Scholar 

  • Kleinberg, R.L., S.A. Farooqui, and M.A. Horsfield, “T 1/T 2 Ratio and Frequency Dependence of NMR Relaxation in Porous Sedimentary Rocks,” J. Colloid Interface Sci., 158, 195–198 (1993).

    Google Scholar 

  • Latour, L.L., P.P. Mitra, R.L. Kleinberg, and C.H. Sotak, “Time-Dependent Diffusion Coefficients of Fluids in Porous Media as Probe of Surface-to-Volume Ratio,” J. Magn. Reson. A, 101, 342–346 (1993).

    Google Scholar 

  • Latour, L.L., R.L. Kleinberg, P.P. Mitra, and C.H. Sotak, “Pore-Size Distribution and Tortuosity in Heterogeneous Porous Media,” J. Magn. Reson. A, 112, 83–91 (1995).

    Google Scholar 

  • Lorenz, P., M. Bülow, and J. Kärger, “Self-Diffusion Behaviour of n-heptane/benzene Mixtures in the Intercrystalline Space of Packings of NaX Zeolite Crystals as Observed by the NMR Pulsed Field Gradient Technique,” Colloids and Surf., 11, 353–364 (1984).

    Google Scholar 

  • Lucas, A.J., S.J. Gibbs, M. Peyron, G.K. Pierens, L.D. Hall, R.C. Stewart, and D.W. Phelps, “Pore Geometry Information Via Pulsed Field Gradient NMR,” Magn. Reson. Imaging, 12, 249–251 (1994).

    PubMed  Google Scholar 

  • Lipsicas, M., J.R. Bananar, and J. Willemsen, “Surface Relaxation and Pore Size in Rocks—A Nuclear Magnetic Resonance Analysis,” Appl. Phys. Lett., 48, 1544–1546 (1986).

    Google Scholar 

  • Mitra, P.P. and P.N. Sen, “Effects of Microgeometry and Surface Relaxation on NMR Pulsed-Field-Gradient Experiments: Simple Pore Geometries,” Phys. Rev. B, 45, 143–156 (1992).

    Google Scholar 

  • Mitra, P.P., P.N. Sen, and L.M. Schwartz, “Short-Time Behaviour of the Diffusion Coefficient as a Geometrical Probe of Porous Media,” Phys. Rev. B, 47, 8565–8574 (1993).

    Google Scholar 

  • Mitra, P.P., L.L. Latour, R.L. Kleinberg, and C.H. Sotak, “Pulsed-Field-Gradient NMR Measurements of Restricted Diffusion and the Return-to-the-Origin Probability,” J. Magn. Reson. A, 114, 47–58 (1995).

    Google Scholar 

  • Nijhuis, T.A., L.J.P. van den Broeke, J.M. van de Graaf, F. Kapteijn, M. Makkee, and J.A. Moulijn, “Bridging the Gap Between Macroscopic and NMR Diffusivities,” Chem. Engin. Sci., 52, 3401–3404 (1997).

    Google Scholar 

  • Nivarthi, S.S. and A.V. McCormick, “Diffusion of Co-adsorbed Molecules in Zeolites: A Pulsed Field Gradient NMR Study,” J. Phys. Chem., 99, 4661–4666 (1995).

    Google Scholar 

  • Ruthven, D.M., M. Eic, and E. Richard, “Diffusion of C8 Aromatic Hydrocarbons in Silicalite,” Zeolites, 11, 647–653 (1991).

    Google Scholar 

  • Ruthven, D.M., M. Eic, and Z. Xu, “Diffusion of Hydrocarbons in A and X Zeolites and Silicalite,” Catalysis and Adsorption by Zeolites, G. Öhlmann, H. Pfeifer, and R. Fricke (Eds.), pp. 233–246, Elsevier, Amsterdam, 1991.

    Google Scholar 

  • Schemmert, U., J. Kärger, C. Krause, R.A. Rakoczy, and J. Weitkamp, “Monitoring the Evolution of Intracrystalline Concentration,” Europhys. Lett. 46, 204–210 (1999).

    Google Scholar 

  • Schwarz, H.B., S. Ernst, J. Kärger, B. Knorr, G. Seiffert, R.Q. Snurr, B. Staudte, and J. Weitkamp, “In situ 13C Fourier Transform Pulsed Field Gradient NMR Study of Intracrystalline Diffusion During Isopropanol Conversion in X-type Zeolites,” J. Catal., 167, 248–255 (1997).

    Google Scholar 

  • Sen, P.N. and M.D. Hürliman, “Analysis of Nuclear Magnetic Resonance Spin Echoes Using Simple Structure Factors,” J. Chem. Phys., 101, 5423–5430 (1994).

    Google Scholar 

  • Snurr, R.Q. and J. Kärger, “Molecular Simulations and NMR Measurements of Binary Diffusion in Zeolites,” J. Phys. Chem. B, 101, 6469–6473 (1997).

    Google Scholar 

  • Sørland, G.H., “Short Time PFGSTE Diffusion Measurements,” J. Magn. Reson., 126, 146–148 (1997).

    PubMed  Google Scholar 

  • Straley, C., C.E. Morris, W.E. Kenyon, and J.J. Howard, “NMR in Partially Saturated Rocks: Laboratory Insight on Free Fluid Index and Comparison to Borehole Logs,” paper CC in Transaction of the SPWLA 32nd Logging Symposium, Society of Professional Well Log Analysts, 1991.

  • Stallmach, F., M. Appel, H. Thomann, and J. Shafer, “Irreducible Fluid Saturation Determined by Pulsed Field Gradient NMR,” paper SCA 9620 in International SCA Symposium Proceedings: SPWLA, Society of Core Analysts, Chapter-at-Large, 1996.

  • Stallmach, F. and H. Thomann, “Producible Fluid Volumes in Porous Media Determined by Pulsed Field Gradient Nuclear Magnetic Resonance,” U.S. Patent No. 5,565,775, 1996.

  • Stejeskal, E.O. and J.E. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient,” J. Chem. Phys., 42, 288–292 (1965).

    Google Scholar 

  • Talu, O., M.S. Sun, and D.B. Shah, “Diffusivities of n-Alkanes in Silicalite by Steady-State Single-Crystal Membrane Technique,” AIChE J., 44, 681–694 (1998).

    Google Scholar 

  • Tezel, O.H., D.M. Ruthven, and D.L. Wernicke, “Diffusional Transition in Zeolite NaX: 2. Polycrystalline Gravimetric Studies,” Proceedings of the 6th Int. Zeolite Conference, D. Olsen and A. Bisio (Eds.), pp. 232–241, Butterworths, Guildford, 1984.

    Google Scholar 

  • Theodorou, D.N., R.Q. Snurr, and A.T. Bell, “Molecular Dynamics and Diffusion in Microporous Materials,” Comprehensive Supramolecular Chemistry, G. Alberti and T. Bein (Eds.), pp.507–548, Pergamon, Oxford, 1996.

    Google Scholar 

  • Wernicke, D.L. and E.J. Osterhuber, “Diffusional Transition in Zeolite NaX: 1. Single Crystal Gas Permeation Study,” Proceedings of the 6th Int. Zeolite Conference, D. Olsen and A. Bisio (Eds.), pp. 122–130, Butterworths, Guildford, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stallmach, F., Kärger, J. The Potentials of Pulsed Field Gradient NMR for Investigation of Porous Media. Adsorption 5, 117–133 (1999). https://doi.org/10.1023/A:1008949607093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008949607093

Navigation