Skip to main content
Log in

Evidence for a Distinct Light-Induced Calcium-Dependent Potassium Current in Hermissenda Crassicornis

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A model of phototransduction is developed as a first step toward a model for investigating the critical interaction of light and turbulence stimuli within the type B photoreceptor of Hermissenda crassicronis. The model includes equations describing phototransduction, release of calcium from intracellular stores, and other calcium regulatory mechanisms, as well as equations describing ligand-gating of a rhabdomeric sodium current. The model is used to determine the sources of calcium in the soma, whether calcium or IP3 is a plausible ligand of the light-induced sodium current, and whether the light-induced potassium current is equivalent to the calcium-dependent potassium current activated by light-induced calcium release. Simulations show that the early light-induced calcium elevation is due to influx through voltage-dependent channels, whereas the later calcium elevation is due to release from intracellular stores. Simulations suggest that the ligand of the fast, light-induced sodium current is IP3 but that there is a smaller, prolonged component of the light-induced sodium current that is activated by calcium. In the model, the calcium-dependent potassium current, located in the soma, is activated only slightly by light-induced calcium elevation, leading to the prediction that a calcium-dependent potassium current, active at resting potential, is located in the rhabdomere and is responsible for the light-induced potassium current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed Z, Connor JA (1988) Calcium regulation by and buffer capacity of molluscan neurons during calcium transients. Cell Calcium 9:57-69.

    Google Scholar 

  • Albritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812-1815.

    Google Scholar 

  • Alkon DL, Lederhendler I, Shoukimas JJ (1982) Primary changes of membrane currents during retention of associative learning. Science 215:693-695.

    Google Scholar 

  • Alkon DL, Naito S, Kubota M, Chen C, Bank B, Smallwood J, Gallant P, Rasmussen H (1988) Regulation of Hermissenda K+ channels by cytoplasmic and membrane-associated C-kinase. J. Neurochem. 51:903-917.

    Google Scholar 

  • Alkon DL, Sakakibara M (1985) Calcium activates and inactivates a photoreceptor soma potassium current. Biophysical J. 48:983-995.

    Google Scholar 

  • Alkon DL, Sakakibara M, Forman R, Harrigan J, Lederhendler I, Farley J (1985) Reduction of two voltage-dependent K+ currents mediates retention of a learned association. Behavioral and Neural Biol. 44:278-300.

    Google Scholar 

  • Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium response curves of Ins(1,45)P3-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751-754.

    Google Scholar 

  • Bhatia J, Davies A, Gaudoin JB, Saibil HR (1996) Rhodopsin, Gq and phospholipase C activation in cephalopod photoreceptors. J. Photochem. Photobiol. B: Biol. 35:19-23.

    Google Scholar 

  • Blackwell KT (1999) Dynamics of light-induced currents in Hermissenda. Neurocomputing 26-27:61-67.

    Google Scholar 

  • Blackwell KT, Alkon DL (1999) Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis. Brain Res. 822:114-125.

    Google Scholar 

  • Blackwell KT, Vogl TP, Alkon DL (1998) Cellular mechanisms of calcium elevation involved in long-term memory. In: Bower J, ed. Trends in Computational Neuroscience 1998. Kluwer, New York. pp. 137-142.

    Google Scholar 

  • Blumenfeld H, Zablow L, Sabatini B (1992) Evaluation of cellular mechanisms for modulation of calcium transients using a mathematical model of Fura-2 Ca2+ imaging in Aplysia sensory neurons. Biophys. J. 64:1146-1164.

    Google Scholar 

  • Chen C, Alkon DL (1987) Voltage-dependence of light-induced currents in type B photoreceptor somata of Hermissenda. Society for Neurosci. Abstract 13:1397.

    Google Scholar 

  • Chinn K, Lisman J (1984) Calcium mediates the light-induced decrease in maintained K+ current in Limulus ventral photoreceptors. J. Gen. Physiol. 84:447-462.

    Google Scholar 

  • Connor J, Alkon DL (1984) Light and voltage-dependent increases of calcium ion concentration in molluscan photoreceptors. J. Neurophysiol. 51:745-752.

    Google Scholar 

  • Crow T, Alkon DL (1980) Associative behavioral modification in Hermissenda: Cellular correlates. Science 209:412-414.

    Google Scholar 

  • Crow T, Forrester J (1991) Light paired with serotonin in vivo produces both short-and long-term enhancement of generator potentials of identified B photoreceptors in Hermissenda. J. Neurosci. 11:608-617.

    Google Scholar 

  • Crow T, Heldman E, Hacopian V, Enos R, Alkon DL (1979) Ultrastructure of photoreceptors in the eye of Hermissenda labelled with intracellular injections of horseradish peroxidase. J. Neurocytology 8:181-195.

    Google Scholar 

  • De Schutter E, Bower J (1994) An active membrane model of the cerebellar Purkinje cell I. Simulation of current clamps in slice. J. Neurophysiol. 71:375-400.

    Google Scholar 

  • De Schutter E, Smolen P (1998) Calcium dynamics in large neuronal models. In Koch C, Segev I, eds. Methods in Neuronal Modeling. (2nd ed.) MIT Press, Cambridge, MA.

    Google Scholar 

  • Detwiler PB (1976) Multiple light-evoked conductance changes in the photoreceptors of Hermissenda crassicornis. J. Physiol. 256:694-708.

    Google Scholar 

  • De Young G, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model of agonist-stimulated oscillations in Ca2+ concentration. Proc. Natl. Acad. Sci. USA 89: 9895-9899.

    Google Scholar 

  • Eakin RM, Westfall JA, Dennis MJ (1967) Fine structure of the eye of a nudibranch mollusc, Hermissenda crassicornis. J. Cell Sci. 2:349-358.

    Google Scholar 

  • Farley J, Alkon DL (1982) Associative neural and behavioral change in Hermissenda: Consequences of nervous system orientation for light-and pairing-specificity. J. Neurophysiol. 48:785-807.

    Google Scholar 

  • Farley J, Auerbach S (1986) Protein kinase C activation induces conductance changes in Hermissenda photoreceptors like those seen in associative learning. Nature 319:220-223.

    Google Scholar 

  • Feng JJ, Frank TM, Fein A (1991) Excitation of Limulus photoreceptors by hydrolysis-resistant analogs of cGMP and cAMP. Brain Res. 552:291-294.

    Google Scholar 

  • Finch EA, Turner TJ, Goldin SM (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252:443-446.

    Google Scholar 

  • Fost JW, Clark GA (1996) Modeling Hermissenda: I. Differential contributions of IA and IC to type-B cell plasticity. J. Comput. Neurosci. 3:137-154.

    Google Scholar 

  • Frysztak RJ, Crow T (1994) Enhancement of type B-and type A-photoreceptor inhibitory connections in conditioned Hermissenda. J. Neurosci. 14:1245-1250.

    Google Scholar 

  • Frysztak RJ, Crow T (1997) Synaptic enhancement and enhanced excitability in presynaptic and postsynaptic neurons in the conditioned stimulus pathway of Hermissenda. J. Neurosci. 17:4426-4433.

    Google Scholar 

  • Ito E, Oka K, Collin C, Schreurs BG, Sakakibara M, Alkon DL (1994) Intracellular calcium signals are enhanced for days after Pavlovian conditioning. J. Neurochem. 62:1337-1344.

    Google Scholar 

  • Li Y-X, Rinzel J (1994) Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: A Hodgkin-Huxley like formalism. J. Theor. Biol. 166:461-473.

    Google Scholar 

  • Matzel LD, Rogers RF (1993) Postsynaptic calcium, but not cumulative depolarization, is necessary for the induction of associative plasticity in Hermissenda. J. Neurosci. 13:5029-5040.

    Google Scholar 

  • McPhie DL, Matzel LD, Olds JL, Lester DS, Kuzirian AM, Alkon DL (1993) Cell specificity of molecular changes during memory storage. J. Neurochem. 60:646-651.

    Google Scholar 

  • Morgans CW, El Far O, Berntson A, Wassle H, Taylor WR (1998) Calcium extrusion from mammalian photoreceptor terminals. J. Neurosci. 18:2467-2474.

    Google Scholar 

  • Muzzio IA, Talk AC, Matzel LD (1997) Incremental redistribution of protein kinase C underlies the acquisition curve during in vitro associative conditioning in Hermissenda. Behavioral Neurosci. 111:739-753.

    Google Scholar 

  • Muzzio IA, Talk AC, Matzel LD (1998) Intracellular Ca2+ and adaptation of voltage responses to light in Hermissenda photoreceptors. Neuroreport. 9:1625-1631.

    Google Scholar 

  • Nowycky MC, Pinter MJ (1993) Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys. J. 64:77-91.

    Google Scholar 

  • Powers DL (1979) Boundary Value Problems (2nd ed.). Academic Press, New York. chs. 2, 5.

    Google Scholar 

  • Rack M, Xhonneux-Cremers B, Schraermeyer U, Stieve H (1994) On the Ca2+-dependence of inositol-phospholipid-specific phospholipase C of microvillar photoreceptors from Sepia officinalis. Exp. Eye Res. 58:659-664.

    Google Scholar 

  • Richard EA, Sampat P, Lisman JE (1995) Distinguishing between roles for calcium in Limulus photoreceptor excitation. Cell Calcium 18:331-341.

    Google Scholar 

  • Sakakibara M, Alkon DL, Kouchi T, Inoue H, Yoshioka T (1994) Induction of photoresponse by the hydrolysis of polyphosphoinositides in the Hermissenda type B photoreceptor. Biochem. Biophys. Res. Commun. 202:299-306.

    Google Scholar 

  • Sakakibara M, Ikeno M, Usui S, Collin C, Alkon DL (1993) Reconstruction of ionic currents in a molluscan photoreceptor. Biophysical J. 65:519-527.

    Google Scholar 

  • Sakakibara M, Inoue H, Yoshioka T (1998) Evidence for the involvement of inositol trisphosphate but not cyclic nucleotides in visual transduction in Hermissenda eye. J. Biol. Chem. 273:20795-20801.

    Google Scholar 

  • Sala F, Hernandez-Cruz A (1990) Calcium diffusion modeling in a spherical neuron: Relevance of buffering properties. Biophys. J. 57:313-324.

    Google Scholar 

  • Schuman EM, Clark GA (1994) Synaptic facilitation at connections of Hermissenda type B-photoreceptors. J. Neurosci. 14:1613-1622.

    Google Scholar 

  • Scott K, Zuker C (1997) Lights out: Deactivation of the phototransduction cascade. Trends in Biochem. Sci. 22:350-354.

    Google Scholar 

  • Stensaas LJ, Stensaas SS, Trujillo-Cenoz O (1969) Some morphological aspects of the visual system of Hermissenda crassicornis (Mollusca: Nudibranchia). J. Ultrastructure Res. 27:510-532.

    Google Scholar 

  • Suzuki T, Terakita A, Narita K, Nagai K, Tsukahara Y, Kito Y (1995) Squid photoreceptor phospholipase C is stimulated by membrane Gqα but not by soluble Gqα. FEBS Letters 377:333-337.

    Google Scholar 

  • Talk AC, Matzel LD (1996) Calcium influx and release from intracellular stores contribute differentially to activity-dependent neuronal facilitation in Hermissenda photoreceptors. Neurobiol. Learning and Memory 66:183-197.

    Google Scholar 

  • Talk AC, Muzzio IA, Matzel LD (1997) Phospholipases and arachidonic acid contribute independently to sensory transduction and associative neuronal facilitation in Hermissenda B photoreceptors. Behavioral Neurosci. 111:309-319.

    Google Scholar 

  • Ukhanov KY, Flores TM, Hsiao HS, Mohapatra P, Pitts CH, Payne R (1995) Measurement of cytosolic Ca2+ concentration in Limulus ventral photoreceptors using fluorescent dyes. J. Gen. Physiol. 105:95-116.

    Google Scholar 

  • Ukhanov K, Payne R (1995) Light activated calcium release in Limulus ventral photoreceptors as revealed by laser confocal microscopy. Cell Calcium 18:301-313.

    Google Scholar 

  • Ukhanov K, Payne R (1997) Rapid coupling of calcium release to depolarization in Limulus polyphemus ventral photoreceptors as revealed by microphotolysis and confocal microscopy. J. Neurosci. 17:1701-1709.

    Google Scholar 

  • Wagner J, Keizer J (1994) Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophysical J. 67:447-456.

    Google Scholar 

  • Wang S-H, Alousi AA, Thompson SH (1995) The lifetime of inositol 1,4,5-trisphosphate in single cells. J. Gen. Physiol. 105:149-171.

    Google Scholar 

  • West A, Barnes E, Alkon DL (1982) Primary changes of voltage responses during retention of associative learning. J. Neurophysiol. 48:1243-1255.

    Google Scholar 

  • Yamoah EN, Crow T (1994) Two components of calcium currents in the soma of photoreceptors of Hermissenda. J. Neurophysiol. 72:1327-1336.

    Google Scholar 

  • Yamoah EN, Crow T (1995) Evidence for a contribution of ICa to serotonergic modulation of IKCa in Hermissenda photoreceptors. J. Neurophysiol. 74:1349-1354.

    Google Scholar 

  • Yamoah E, Matzel L, Crow T (1998) Expression of different types of inward rectifier currents confers specificity of light and dark responses in type A and B photoreceptors of Hermissenda. J. Neurosci. 18:6501-6511.

    Google Scholar 

  • Yarfitz S, Hurley JB (1994) Transduction mechanisms of vertebrate and invertebrate photoreceptors. J. Biol. Chem. 269:14329-14332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blackwell, K. Evidence for a Distinct Light-Induced Calcium-Dependent Potassium Current in Hermissenda Crassicornis. J Comput Neurosci 9, 149–170 (2000). https://doi.org/10.1023/A:1008919924579

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008919924579

Navigation