Skip to main content
Log in

Handoffs in Cellular Wireless Networks: The Daedalus Implementation and Experience

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Network protocols in cellular wireless data networks must update routes as a mobile host moves between cells. These routing updates combined with some associated state changes are called handoffs. Most current handoff schemes in wireless networks result in data loss or large variations in packet delivery times. Unfortunately, many applications, such as real-time multimedia applications and reliable transport protocols, adapt to long term estimates of end-to-end delay and loss. Violations and rapid fluctuations of these estimates caused by handoff processing often result in degraded performance. For example, loss during handoff adversely affects TCP performance [4], and high packet loss and variable delays result in poor real-time multimedia performance. In this paper, we describe a multicast-based protocol that eliminates data loss and incurs negligible delays during a handoff. The basic technique of the algorithm is to anticipate a handoff using wireless network information in the form of received signal strengths and to multicast data destined for the mobile host to nearby base stations in advance. This routing, combined with intelligent buffering techniques at the base stations, enables very rapid routing updates and eliminates data loss without the use of explicit data forwarding. We have implemented this protocol using IP Multicast and Mobile IP-like routing. In our implementation, handoffs typically take between 8 and 15 ms to complete and result in no data loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.S. Acampora and M. Naghshineh, “An architecture and methodology for mobile-executed handoff in cellular ATM.” IEEE Journal on Selected Areas in Communications, Vol. 12, No. 8, pp. 1365–1375, 1994.

    Article  Google Scholar 

  2. American Telephone and Telegraph. WaveLAN: PC/AT Card Installation and Operation.

  3. H. Balakrishnan, S. Seshan and R.H. Katz, “Improving reliable transport and handoff performance in cellular wireless networks,” ACM Wireless Networks, Vol. 1, No. 4, 1995.

  4. R. Caceres and L. Iftode, “Improving the performance of reliable transport protocols in mobile computing environments,” IEEE JSAC, Vol. 13, No. 5, 1995.

  5. The Daedalus Project Home Page. http://daedalus.CS.Berkeley.EDU/, 1995.

  6. Steve Deering, Host Extensions for IP Multicasting. RFC, SRI International, Menlo Park, CA, Aug. 1989. RFC–1112.

    Google Scholar 

  7. S.E. Deering, “Multicast routing in a datagram internetwork,” Ph.D. Thesis, Stanford University, December 1991.

  8. M.R. Garey and D.S. Johnson, Computers and Intractability, W. H. Freeman and Company: New York, 1979.

    Google Scholar 

  9. R. Ghai and S. Singh, “An architecture and communications protocol for picocellular networks,” IEEE Personal Communications Magazine, Vol. 1, No. 3, pp. 36–46, 1994.

    Google Scholar 

  10. K. Keeton, B.A. Mah, S. Seshan, R.H. Katz and D. Ferrari, “Providing connection-oriented service to mobile hosts,” in Proc. 1993 USENIX Symp. on Mobile and Location-Independent Computing, August 1993.

  11. S. McCanne and V. Jacobson, “Vic: A flexible framework for packet video”, in Proc. ACM Multimedia '95, November 1995, to appear.

  12. A. Myles, D.B. Johnson and C. Perkins, “A mobile host protocol supporting route optimization and authentication,” IEEE Journal on Selected Areas in Communications, Vol. 13, No. 5, 1995.

  13. A. Merchant and B. Sengupta, “Assignment of cells to switches in pcs networks,” IEEE/ACM Transactions on Networking, Vol. 3, No. 5, pp. 521–526, 1995.

    Google Scholar 

  14. S. Seshan, “Low latency handoffs in cellular data networks,” Ph.D. Thesis, University of California at Berkeley, December 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seshan, S., Balakrishnan, H. & Katz, R.H. Handoffs in Cellular Wireless Networks: The Daedalus Implementation and Experience. Wireless Personal Communications 4, 141–162 (1997). https://doi.org/10.1023/A:1008830311723

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008830311723

Navigation