Skip to main content
Log in

Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Heterologous expression in Pichia pastoris has many of the advantages of eukaryotic expression, proper folding and disulfide bond formation, glycosylation, and secretion. Contrary to other eukaryotic systems, protein production from P.pastoris occurs in simple minimal defined media making this system attractive for production of labeled proteins for NMR analysis. P.pastoris is therefore the expression system of choice for NMR of proteins that cannot be refolded from inclusion bodies or that require post-translational modifications for proper folding or function. The yield of expressed proteins from P.pastoris depends critically on growth conditions, and attainment of high cell densities by fermentation has been shown to improve protein yields by 10–100-fold. Unfortunately, the cost of the isotopically enriched fermentation media components, particularly 15NH4OH, is prohibitively high. We report fermentation methods that allow for both 15N- labeling from (15NH4)2SO4 and 13C-labeling from 13C-glucose or 13C-glycerol of proteins produced in Pichia pastoris. Expression of an 83 amino acid fragment of thrombomodulin with two N-linked glycosylation sites shows that fermentation is more cost effective than shake flask growth for isotopic enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Brierley, R.A., Bussineau, C., Kosson, R., Melton, A. and Siegel, R.S. (1990) Ann. New York Acad. Sci., 589, 350–362.

    Google Scholar 

  • Chen, Y.L., Cino, J., Hart, G., Freedman, D., White, C.E. and Komives, E.A. (1996) Process Biochem., 32, 107–111.

    Google Scholar 

  • Clare, J.J., Rayment, F.B., Ballantine, S.P., Sreekrishna, K. and Romanos, M. (1991a) Bio/Technology, 9, 455–460.

    Google Scholar 

  • Clare, J.J., Romanos, M., Rayment, F.B., Rowedder, J.E., Smith, M.A., Payne, M.M., Sreekrishna, K. and Henwood, C.A. (1991b) Gene, 105, 205–211.

    Google Scholar 

  • Clore, G.M. and Gronenborn, A.M. (1997) Nat. Struct. Biol., 4, 849–853.

    Google Scholar 

  • Cregg, J.M., Tschopp, J.F., Stillman, C., Siegel, R., Akong, M., Craig, W.S., Buckholz, R. G., Madden, K.R., Kellaris, P.A., Davis, G.R., Smiley, B.L., Cruze, J., Torregrossa, R., Velicelebi, G. and Thill, G.P. (1987) Bio/Technology, 5, 479–485.

    Google Scholar 

  • Cregg, J.M., Vedvick, T.S. and Raschke, W.C. (1993) Bio/Technology, 11, 905–910.

    Google Scholar 

  • Fesik, S.W. and Zuiderweg, E.R.P. (1990) Q. Rev. Biophys., 23, 97–131.

    Google Scholar 

  • Laroche, Y., Storme, V., De Meutter, J., Messens, J. and Lauwereys, M. (1994) Bio/Technology, 12, 1119–1124.

    Google Scholar 

  • Lougheed, J.L., Bowman, C.A., Meininger, D.P. and Komives, E.A. (1995) Protein Sci., 4, 773–780.

    Google Scholar 

  • Lustbader, J.W., Birken, S., Pollak, S., Pound, A., Chait, B.T., Mirza, U.A., Ramnarain, S., Canfield, R.E. and Brown, J.M. (1996) J. Biomol. NMR, 7, 295–304.

    Google Scholar 

  • Meininger, D.P., Hunter, M.J. and Komives, E.A. (1995) Protein Sci., 4, 1683–1695.

    Google Scholar 

  • Sampoli Benitez, B., Hunter, M.J., Meininger, D.P. and Komives, E.A. (1997) J. Mol. Biol., 273, 913–926.

    Google Scholar 

  • Siegel, R.S. and Brierley, R.A. (1989) Biotechnol. Bioeng., 34, 403–404.

    Google Scholar 

  • Tschopp, J.F., Brust, P.F., Cregg, J.M., Stillman, C.A. and Gingras, T.R. (1987) Nucleic Acids Res., 9, 3859–3876.

    Google Scholar 

  • Venters, R.A., Calderone, T.L., Spicer, L.D. and Fierke, C.A. (1991) Biochemistry, 30, 4491–4494.

    Google Scholar 

  • Wegner, G.H. and Harder, W. (1987) Antonie Van Leeuwenhoek, 53, 29–36.

    Google Scholar 

  • White, C.E., Hunter, M.J., Meininger, D.P., White, L.R. and Komives, E.A. (1995) Protein Eng., 8, 1177–1187.

    Google Scholar 

  • White, C.E., Hunter, M.J., Meininger, D.P., Garrod, S. and Komives, E.A. (1996) Proc. Natl. Acad. Sci. USA, 93, 10177–10182.

    Google Scholar 

  • Wiles, A.P., Shaw, G., Bright, J., Perczel, A., Campbell, I.D. and Barlow, P.N. (1997) J. Mol. Biol., 272, 253–265.

    Google Scholar 

  • Wyss, D.F., Dayie, K.T. and Wagner, G. (1997) Protein Sci., 6, 534–542.

    Google Scholar 

  • Wyss, D.F., Choi, J.S., Li, J., Knoppers, M.H., Willis, K.J., Arulanandam, R.N., Smolyyar, A., Reinherz, E.L. and Wagner, G. (1995) Science, 269, 1273–1278.

    Google Scholar 

  • Wyss, D.F. and Wanger, G. (1996) Curr. Opin. Biotechnol., 7, 409–416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, M.J., Komives, E.A. Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation. J Biomol NMR 13, 149–159 (1999). https://doi.org/10.1023/A:1008398313350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008398313350

Navigation