Skip to main content
Log in

Biodeterioration of natural stone with special reference to nitrifying bacteria

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

An evaluation of field data from historical buildings in Germany showed that chemoorganotrophic bacteria are the most numerous microorganisms in building stones, followed by fungi and nitrifying bacteria. Chemoorganotrophic bacteria and fungi were present in almost every sample. Ammonia and nitrite oxidizers were found in 55 and 62% of the samples, respectively. Within months, natural stone was colonized by chemoorganotrophic microorganisms. The highest cell numbers were usually found near the surface. The colonization of natural stone by nitrifying bacteria took several years. The highest cell numbers were in some cases found underneath the surface. Nitrifying bacteria showed a preference for calcareous material with a medium pore radius between 1 and 10 μm. Cell numbers of nitrifying bacteria did not correlate to the nitrate content of the stone material. We demonstrated that the stone inhabiting microflora can cause significant loss of nitrate by denitrification. Our data strongly suggested that microbial colonization of historical buildings was enhanced by anthropogenic air pollution. Samples taken from stone material with a pore radius ≤ 1 μm had significantly higher cell numbers when they were covered with black crusts. A comparison of samples taken between 1990–1995 from buildings throughout Germany showed that in eastern Germany a significantly stronger colonization with facultatively methylotrophic bacteria and nitrifying bacteria existed. The same was true for natural stone from an urban exposure site when compared to material from a rural exposure site. Data from outdoor exposure and laboratory simulation experiments indicated that the colonization of calcareous stone by nitrifying bacteria was enhanced by chemical weathering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anonymous (1992) Bericht der Bundesregierung an den Deutschen Bundestag. Fünfter Immissionsschutzbericht des Bundesregierung. In: Der Bundesumweltminister (Ed) Umweltpolitik, Deutscher Bundestag Drucksache 12/4006. Bonn

  • Ariño X, Ortega-Calvo JJ, Gomez-Bolea A & Saiz-Jimenez C (1995) Lichen colonization of the roman pavement at Baelo Claudia (Cadiz, Spain): biodeterioration vs. bioprotection. Sci Total Environ 167: 353- 364

    Google Scholar 

  • Asman WAH & Van Jaarsveld HA (1992) A variable-resolution transport model applied for NHx in Europe. Atmos Environ 26A(3): 445- 464

    Google Scholar 

  • Badr O, Probert SD & O'Callaghan PW (1991) Atmospheric methane: Its contribution to global warming. Applied Energy 40: 273- 313

    Google Scholar 

  • Baumgärtner M, Remde A, Bock E & Conrad R (1989) Release of nitric oxide from building stones into the atmosphere. Atmos Environ 24B: 87- 92

    Google Scholar 

  • Baumgärtner M, Sameluck F, Bock E & Conrad R (1991) Production of nitric oxide by ammonium-oxidizing bacteria colonizing building stones. FEMS Microbiol Ecol 85: 95- 100

    Google Scholar 

  • Behlen A, Wittenburg C, Steiger M & Dannecker W (1996) Dry deposition of NO, NO2, HONO, HNO3 and pan on historical building stones. In: Riederer J (Ed) Proceedings of the 8th International Congress on Deterioration and Conservation of Stone (pp 377- 385). Möller Druck und Verlag GmbH, Berlin

    Google Scholar 

  • Behlen A, Steiger M & Dannecker W (1997) Quantification of the salt input by wet and dry deposition on a vertical masonry. In: Moropoulou A, Zezza F, Kollias E & Papachristodoulou I (Eds) Proceedings 4th International Symposium on the Conversation of Monuments in the Mediterranean. University of Athens

  • Belser LW & Mays EL (1982) Use of nitrifier activity measurement to estimate the efficiency of viable nitrifier counts in soils and sediments. Appl Environ Microbiol 43(4): 945- 948

    Google Scholar 

  • Berthelin J (1983) Microbial weathering processes. In: Krumbein WE (Ed) Microbial Geochemistry, vol 8 (pp 223- 262). Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Biedenkopf G (1985) Reinhaltung der Luft aus der Sicht der Wirtschaft. Staub-Reinh Luft 45(9): 397- 401

    Google Scholar 

  • Bock E (1987) Biologisch induzierte Korrosion von Naturstein - starker Befall mit Nitrifikanten. Bautenschutz + Bausanierung 10: 24- 27

    Google Scholar 

  • Bock E & Fahrig N (1993) Mikroorganismen in Steinen historischer Bauten - eine Datenanalyse. In: Snethlage R (Ed) Jahresberichte Steinzerfall - Steinkonservierung 1991, vol 3 (pp 179- 195). Ernst & Sohn, Berlin

    Google Scholar 

  • Bock E & Koops HP (1992) The genus Nitrobacter and related genera. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (Eds) The Prokaryotes, 2nd ed, vol III, chapter 113 (pp 2303- 2309). Springer, New York

    Google Scholar 

  • Bock E & Sand W (1990) Microbially influenced corrosion of concrete and natural sandstone. In: Dowling NJ, Mittelman MW, Danko JC (Eds) Microbially Influenced Corrosion and Biodeterioration (pp 29- 33). The University of Tennessee, Knoxville

    Google Scholar 

  • ____ (1993) The microbiology of masonry biodeterioration. J Appl Bacteriol 74: 503- 514

    Google Scholar 

  • Bock E, Ahlers B & Meyer C (1989) Biogene Korrosion von Betonund Natursteinen. Bauphysik 11(4): 141- 144

    Google Scholar 

  • Bock E, Koops H-P, Möller UC & Rudert M (1990) A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. nov. Arch Microbiol 153: 105- 110

    Google Scholar 

  • Bock E, Diercks M, Krause-Kupsch T, Lin L, Meincke M, Sameluck F, Sand W & Spieck E (1991) Belastung von Natursteinen mit salpetersäurebildenden Bakterien - eine Bewertung am Beispiel von ausgewählten Bauwerken. In: Snethlage R (Ed) Jahresberichte Steinzerfall - Steinkonservierung 1989, Vol 1 (pp 47- 56). Ernst & Sohn, Berlin

    Google Scholar 

  • Bock E, Jozsa P, Kuß maul M, Mansch R, Sand W, Schröder S, Spieck E, Vollmer M & Wilimzig M (1994) Fortschritte bei der Beurteilung mikrobiell beeinfluß ter Gesteinszerstörung. In: Snethlage R (Ed) Jahresberichte Steinzerfall - Steinkonservierung 1992, Vol 4 (pp 33- 47). Ernst & Sohn, Berlin

    Google Scholar 

  • Bock E, Jozsa PG, Sand W, Mansch R & Wilimzig M (1998) Natursteinzerstörung durch biologische Verwitterung - der Beitrag von Nitrifikanten. In: Snethlage R (Ed) Natursteinkonservierung II (pp 133- 170). IRB-Verlag, Stuttgart

    Google Scholar 

  • Both GJ, Gerards S & Laanbroek HJ (1990) Enumeration of nitrite-oxidizing bacteria in grassland soils using a Most Probable Number technique: effect of nitrite concentration and sampling procedure. FEMS Microbiol Ecol 74: 277- 286

    Google Scholar 

  • Braams J (1992) Ecological studies on the fungal microflora inhabiting historical sandstone monuments. Doctoral thesis, University of Oldenburg

  • Braun RC & Wilson MJG (1970) The removal of atmospheric sulphur by building stones. Atmos Environ 4: 371- 378

    Google Scholar 

  • Brüggerhoff S & Wagener-Lohse C (1989) Gesteinsverwitterung in Freilandversuchsfeldern - Erfahrungen mit ihrer Errichtung und Nutzung. Sonderausgabe (special issue) Bautenschutz + Bausanierung: 76–80

  • Buijsman E, Maas HFM & Asman WAH (1987) Anthropogenic NH3 emissions in Europe. Atmos Environ 21(5): 1009- 1022

    Google Scholar 

  • Camuffo D, Del Monte M, Sabbioni C & Vittori O (1982) Wetting, deterioration and visual features of stone surfaces in an urban area. Atmos Environ 16(9): 2253- 2259

    Google Scholar 

  • ____ (1983) Origin and growth mechanisms of the sulphated crusts on urban limestone. Water, Air, and Soil Pollution 19: 351- 359

    Google Scholar 

  • Cooper AB (1983) Population ecology of nitrifiers in a stream receiving geothermal inputs of ammonium. Appl Environ Microbiol 45(4): 1170- 1177

    Google Scholar 

  • Corbin JL (1984) Liquid chromatographic-fluorescence determination of ammonia from nitrogenase reactions: A 2-min assay. Appl Environ Microbiol 47(5): 1027- 1030

    Google Scholar 

  • Costerton JW, Cheng K-J, Geesey GG, Ladd TI, Nickel JC, Dasgupta M & Marrie TJ (1987) Bacterial biofilms in nature and disease. Ann Rev Microbiol 4: 435- 464

    Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR & Lappin-Scott HM (1995) Microbial biofilms. Ann Rev Microbiol 49: 711- 745

    Google Scholar 

  • De la Torre MA & Gó mez-Alarcó n G (1994) Manganese and iron oxidation by fungi isolated from building stone. Microb Ecol 27: 177- 188

    Google Scholar 

  • De la Torre MA, Gó mez-Alarcó n G, Melgarejo P & Saiz-Jimenez C (1991) Fungi in weathered sandstone from Salamanca cathedral, Spain. Sci Total Environ 107: 159- 168

    Google Scholar 

  • De la Torre MA, Gó mez-Alarcó n G, Vizcaino C & Garcia T (1993a) Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19: 129- 147

    Google Scholar 

  • De la Torre MA, Gó mez-Alarcó n G & Palacios JM (1993b) ‘In vitro’ biofilm formulation by Penicillium frequentans strains on sandstone, granite and limestone. Appl Microbiol Biotechnol 40(2- 3): 408- 415

    Google Scholar 

  • Delopoulou P & Sikiotis D (1992) A comparison of the corrosive action on pentelic marble of nitrates and sulphates with the action of nitrogen oxides and sulphur dioxide. Atmos Environ 26B(2): 183- 188

    Google Scholar 

  • Eckhardt FEW (1979) Ñber die Einwirkung heterotropher Mikroorganismen auf die Zersetzung silikatischer Minerale. Z Pflanzenernaehr Bodenkd 142: 434- 445

    Google Scholar 

  • ____ (1996) Microbial diversity and airborne contamination. In: Heitz E, Flemming H-C, Sand W (Eds) Microbially Influenced Corrosion of Materials (pp 75- 95). Springer, Berlin, Heidelberg

    Google Scholar 

  • Eggleston S, Hackman MP, Heyes CA, Irwin JG, Timmis RJ & Williams ML (1992) Trends in urban air pollution in the United Kingdom during recent decades. Atmos Environ 26B(2): 227- 239

    Google Scholar 

  • Fahrig N (1991) Mikroorganismen in Steinen historischer Bauten - eine Datenanalyse. Diploma thesis, University of Hamburg

  • Flemming H-C (1991) Biofilms as a particular form of microbial life. In: Flemming H-C, Geesey GG (Eds) Biofouling and Biocorrosion in Industrial Water Systems (pp 1- 6). Springer, Berlin

  • ____ (1996) Economical and technical overview. In: Heitz E, Flemming H-C, Sand W (Eds) Microbially influenced corrosion of materials (pp 5- 14). Springer, Berlin, Heidelberg

    Google Scholar 

  • Freitag A & Bock E (1990) Energy conservation in Nitrobacter. FEMS Microbiol Lett 66: 157- 162

    Google Scholar 

  • Garland JA (1978) Dry and wet removal of sulphur from the atmosphere. Atmos Environ 12: 349- 362

    Google Scholar 

  • Gauri KL (1990) Decay and preservation of stone in modern environments. Environ Geol Water Sci 15(1): 45- 54

    Google Scholar 

  • Gauri KL & Holdren Jr GC (1981) Pollutant effects on stone monuments. Environ Sci Technol 15(4) 386- 390

    Google Scholar 

  • Gauri KL, Tambe SS & Caner-Saltik EN (1992) Weathering of dolomite in industrial environment. Environ Geol Water Sci 19(1): 55- 63

    Google Scholar 

  • Gehrmann C, Krumbein WE & Petersen K (1988) Lichen weathering on mineral and rock surfaces. Studia Geobotanica 8: 33- 45

    Google Scholar 

  • Gó mez-Alarcó n C, Munoz M, Ariño X & Ortega-Calvo JJ (1995) Microbial communities in weathered sandstones: the case of Carrascosa del Campo church, Spain. Sci Total Environ 167: 249- 254

    Google Scholar 

  • Green PN (1992) The genus Methylobacterium. In: Balows A, Trüper HG (Eds) The Prokaryotes, 2nd ed, chapter 117 (pp 2342- 2349). Springer, New York

    Google Scholar 

  • Griffin PS, Indictor N & Koestler RJ (1991) The biodeterioration of stone: a review of deterioration mechanisms, conservation case histories, and treatment. Int Biodet 28: 187- 207

    Google Scholar 

  • Grimm W-D (1987) Zur Verwitterung von Denkmalgesteinen auf Friedhöfen der Bundesrepublik Deutschland. Sonderausgabe (special issue) Bautenschutz + Bausanierung: 56- 60

  • ____ (1990) Bildatlas wichtiger Denkmalgesteine der Bundesrepublik Deutschland, Arbeitsheft 50, Bayrisches Landesamt für Denkmalspflege, München

  • Haneef SJ, Johnson JB, Dickinson C, Thompson GE & Wood GC (1992) Effect of dry deposition of NOx and SO2 gaseous pollutants on the degradation of calcareous building stones. Atmos Environ 26A(16): 2963- 2974

    Google Scholar 

  • Henderson MEK & Duff RB (1963) The release of metallic and silicate ions from minerals, rocks and soil by fungal activity. J Soil Sci 14(2): 236- 246

    Google Scholar 

  • Hovanec TA, Taylor LT, Blakis A & Delong EF (1998) Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria. Appl Env Microbiol 64(1): 258- 264

    Google Scholar 

  • Johansson LG (1990) Synergistic effect of air pollutants on the atmospheric corrosion of metals and calcareous stones. Marine Chemistry 30: 113- 122

    Google Scholar 

  • Jones D, Wilson MJ & McHardy WJ (1988) Effects of lichens on mineral surfaces. In: Houghton DR, Smith RN, Eggins HOW (Eds) Biodeterioration 7 (pp 129- 134). Elsevier Applied Science, London, New York

    Google Scholar 

  • Jozsa PG, Stüven R, Kuß maul M & Bock E (1996a) Mikrobielle Korrosion von Beton durch Salpetersäure bildende Bakterien. In: Institut für Massivbau und Baustofftechnologie. Eibl J, Müller HS (Eds) Massivbau Baustofftechnologie Karlsruhe Heft 29 (pp 118–129). DFG Abschluß kolloquium Korrosion nichtmetallischer anorganischer Werkstoffe im Bauwesen, Karlsruhe

    Google Scholar 

  • Jozsa PG, Stüven R, Bock E & Kuß maul M (1996b) Statistical data analysis of microbially influenced deterioration of concrete. In: DECHEMA (Ed) Biodeterioration and Biodegradation-DECHEMA monographs Vol. 133 (pp 199- 208). VCH, Weinheim

    Google Scholar 

  • Kauffmann J (1953) Rô le des bactéries nitrificantes dans l'altération des pierres calcaires des monuments. Corrosion et Anticorrosion 1: 33- 41

    Google Scholar 

  • Kirkitsos P & Sikiotis D (1996) Deterioration of pentelic marble, portland limestone and baumberger sandstone in laboratory exposures to NO2: A comparison to exposures to gaseous HNO3. Atmos Environ 30(6): 941- 950

    Google Scholar 

  • Koops HP & Möller UC (1992) The lithotrophic ammonia-oxidizing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (Eds) The Prokaryotes, 2nd ed, vol III, chapter 137 (pp 2625- 2637). Springer, New York

    Google Scholar 

  • Krause-Kupsch T (1993) Entwicklung einer Schnellmethode zur Identifizierung und Klassifizierung nitritoxidierender Bakterien. Doctoral thesis, University of Hamburg

  • Krumbein WE (1968) Zur Frage der biologischen Verwitterung: Einfluß der Mikroflora auf die Bausteinverwitterung und ihre Abhängigkeit von edaphischen Faktoren. Zeitschrift f Allg Mikrobiologie 8(2): 107- 117

    Google Scholar 

  • Krumbein WE, Bode-Warscheid E, Braams J, Chamier B, Gehrmann K, Grote G, Gross M, Lau R, Schostak V, Petersen K, Warscheid T, Gründgen E, Pilzen M & Schulte A (1992) Mikrobiologie an Natursteinmonumenten - Schadenspotential, Wechselwirkung mit Behandlungen. In: Snethlage R (Ed) Jahresberichte Steinzerfall-Steinkonservierung, vol 2 (pp 39- 66). Ernst & Sohn, Berlin

    Google Scholar 

  • Kuß maul M, Wilimzig M & Bock E (1998) Methanotrophs in masonry. Appl Env Microbiol (accepted)

  • Lacis A, Hanson J, Lee P, Mitchell T & Lebedeff S (1981) Greenhouse effect of trace gases, 1970- 1980. Geophysical Research Letters 8(10): 1035- 1038

    Google Scholar 

  • Leysen L, Roekens E & Van Grieken R (1989) Air-pollution-induced chemical decay of a sandy-limestone cathedral in Belgium. Sci Total Environ 78: 263- 287

    Google Scholar 

  • Lidstrom ME (1992) The aerobic methylotrophic bacteria. In: Balows A, Trüper HG (Eds) The Prokayrotes, 2nd ed, chapter 18 (pp 431- 445). Springer, New York

    Google Scholar 

  • Lipfert FW (1989) Atmospheric damage to calcareous stones: Comparison and reconciliation of recent experimental findings. Atmos Environ 23(2): 415- 429

    Google Scholar 

  • Lloyd D, Boddy L & Davies KJP (1987) Persistence of bacterial denitrification capacity under aerobic conditions: The rule rather than the exception. FEMS Microbiol Ecol 45: 185- 190

    Google Scholar 

  • Luckat S (1973) Die Wirkungen von Luftverunreinigungen beim Steinzerfall. Staub-Reinh Luft 33(7): 283- 285

    Google Scholar 

  • Lyalikova NN & Petushkova YP (1991) Role of microorganisms in the wheatering of minerals in building stone of historical buildings. Geomicrobiology Journal 9: 91- 101

    Google Scholar 

  • Mansch R (1994) Wechselwirkungen zwischen Nitrifikanten und Schadgasen bei der Verwitterung von Naturstein. Doctoral thesis, University of Hamburg

  • Mansch R & Bock E (1994) Mikrobielle Werkstoffzerstörung - Simulation, Schadensfälle und Gegenmaß nahmen für metallische und keramische Werkstoffe: Untersuchung der Beständigkeit von keramischen Werkstoffen. Werkstoffe und Korrosion 45(2): 96- 104

    Google Scholar 

  • ____ (1996) Simulation of microbial attack on natural and artificial stone. In: Heitz E, Flemming H-C, Sand W (Eds) Microbially influenced corrosion of materials (pp 167- 186). Springer, Berlin, Heidelberg

    Google Scholar 

  • May E, Lewis FJ, Pereira S, Tayler S, Seaward MRD & Allsopp D (1993) Microbial deterioration of building stone - a review. Biodeterioration abstracts 7(2): 109- 123

    Google Scholar 

  • McGee ES & Mossotti VG (1992) Gypsum accumulation on carbonate stone. Atmos Environ 26B(2): 249- 253

    Google Scholar 

  • Meincke M, Ahlers B, Krause-Kupsch T, Krieg E, Meyer C, Sameluck F, Sand W & Bock E (1988) Isolation and characterization of endolithic nitrifiers. Proceedings of the 6th International Congress on Deterioration and Conservation of Stone (pp 15- 23). Nicholas Copernicus University, Torun

    Google Scholar 

  • Meincke M, Krieg E & Bock E (1989) Nitrosovibrio spp., the dominant ammonia-oxidizing bacteria in building sandstone. Appl Environ Microbiol 55(8): 2108- 2110

    Google Scholar 

  • Mishra AK, Kamal K & Garg L (1995) Role of higher plants in the deterioration of historic buildings. Sci Total Environ 167: 375- 392

    Google Scholar 

  • Mobarry BK, Wagner U, Urbain V, Rittman BE & Stahl A (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62(6): 2156- 2162

    Google Scholar 

  • Nord AG, Svärdh A & Tronner K (1994) Air pollution levels reflected in deposits on building stone. Atmos Environ 28(16): 2615- 2622

    Google Scholar 

  • Ortega-Calvo JJ, Hernandez-Marine M & Saiz-Jimenez C (1991) Biodeterioration of building materials by cyanobacteria and algae. Int Biodet 28: 165- 185

    Google Scholar 

  • Ortega-Calvo JJ, Ariño X, Hernandez-Marine M & Saiz-Jimenez C (1995) Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Sci Total Environ 167: 329- 341

    Google Scholar 

  • Palmer Jr RJ & Hirsch P (1991) Photosynthesis-based microbial communities on two churches in northern Germany: weathering of granite and glazed brick. Geomicrobiology Journal 9: 103- 118

    Google Scholar 

  • Palmer Jr RJ, Siebert J & Hirsch P (1991) Biomass and organic acids in sandstone of a weathering building: Production by bacterial and fungal isolates. Microb Ecol 21: 253- 266

    Google Scholar 

  • Precht M (1982) Bio-Statistik Teil 1. R. Oldenbourg, München

    Google Scholar 

  • Prignitz M (1995) Versuche zum Nachweis CO-oxidierender Bakterien an Natur-und Kunststeinen. Diploma thesis, University of Hamburg

  • Rosvall J (1988) Air pollution and conservation. Durab Building Mater 5: 209- 237

    Google Scholar 

  • Sabbioni C (1995) Contribution of atmospheric deposition to the formation of damage layers. Sci Total Environ 167: 49- 55

    Google Scholar 

  • Saiz-Jimenez C (1993) Deposition of airborne organic pollutants on historic buildings. Atmos Environ 27B(1): 77- 85

    Google Scholar 

  • ____ (1995) Microbial melanins in stone monuments. Sci Total Environ 167: 273- 286

    Google Scholar 

  • Saiz-Jimenez C, Garcia-Rowe J, Garcia Del Cura MA, Ortega-Calvo JJ, Roekens E & Van Grieken R (1990) Endolithic cyanobacteria in Maastricht limestone. Sci Total Environ 94: 209- 220

    Google Scholar 

  • Saiz-Jimenez C, Ortega-Calvo JJ & de Leeuw JW (1995) The chemical structure of fungal melanins and their possible contribution to black stains in stone monuments. Sci Total Environ 167: 305- 314

    Google Scholar 

  • Sand W (1996) Microbial mechanisms. In: Heitz E, Flemming HC, Sand W (Eds) Microbially influenced corrosion of materials (pp 15- 25). Springer, Berlin, Heidelberg

    Google Scholar 

  • Sand W & Bock E (1991) Biodeterioration of ceramic materials by biogenic acids. Int Biodet 27: 175- 183

    Google Scholar 

  • Sand W, Ahlers B, Krause-Kupsch T, Meincke M, Krieg E, Diercks M, Sameluck F & Bock E (1989) Mikroorganismen und ihre Bedeutung für die Zerstörung von mineralischen Baustoffen. USWF - Z Umweltchem Ökotox 3: 36- 40

    Google Scholar 

  • Schmidt I (1997) Anaerobe Ammoniakoxidation von Nitrosomonas eutropha. Doctoral thesis, University of Hamburg

  • Schobert G, Kort HSM, van Balen K & van Bronswijk JEMH (1995) Biologische Angriffe auf Mauerwerk. Internationale Zeitschrift für Bauinstansetzen 3(1): 193- 209

    Google Scholar 

  • Schröder B (1991) Organische Spurenstoffe in Immissionen sowie in Gesteinsproben historischer Natursteinbauten. In: Prof. Dr. W. Dannecker (Ed) Schriftenreihe Angewandte Analytik, vol 14. Doctoral thesis, Institute for Inorganic and Applied Chemistry, University of Hamburg

  • Seevers H & Van Grieken R (1992) Analytical study of the deterioration of sandstone, marble and granite. Atmos Environ 26B(2): 159- 163

    Google Scholar 

  • Spedding DJ (1969) Short communication - Sulphur dioxide uptake by limestone. Atmos Environ 3: 683

    Google Scholar 

  • Spieck E, Meincke M & Bock E (1992) Taxonomic diversity of Nitrosovibrio strains isolated from building sandstones. FEMS Microbiol Ecol 102: 21- 26

    Google Scholar 

  • Spieck E, Kirstein K, Krause-Kupsch T, Lin L & Bock E (1995) Diversity of Nitrobacter-species in extreme environments. EC-GBF International Symposium: Exploration of Microbial Diversity, P 51, Goslar

  • Steiger M, Wolf F & Dannecker W (1993) Deposition and enrichment of atmospheric pollutants on building stones as determined by field exposure experiments. In: Thiel MJ (Ed) Proceedings of the International RILEM/UNESCO Congress ‘Conservation of stone and other materials’, vol 1 (pp 35- 42). E & FN Spon, London

    Google Scholar 

  • Strzelczyk AB (1981) Stone. In: Rose AH (Ed) Microbial Biodeterioration, Economic Microbiology, vol 6 (pp 60- 80). Academic Press, London

    Google Scholar 

  • Suzuki I, Dular U & Kwok SC (1974) Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. J Bacteriol 120(1): 556- 558

    Google Scholar 

  • Teske A, Alm E, Regan JM, Toze S, Rittmann BE & Stahl DA (1994) Evolutionary relationships among ammonia-and nitriteoxidizing bacteria. J Bacteriol 176: 6623- 6630

    Google Scholar 

  • Tiedje JM (1989) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (Ed) Biology of Anaerobic Microorganisms, chapter 4 (pp 179- 244). John Wiley & Sons, New York

    Google Scholar 

  • Underhill SE (1990) Techniques for studying the microbial ecology of nitrification. Methods in Microbiology 22: 417- 445

    Google Scholar 

  • Vieser H (1987) Wenn die Steine sterben: Rettet die Kunst. Bild der Wissenschaft (12): 42- 56

    Google Scholar 

  • Vollmer M (1997) Untersuchungen zum Energiestoffwechsel von Nitrobacter. Doctoral thesis, University of Hamburg

  • Wagner E & Schwartz W (1965) Geomikrobiologische Untersuchungen. IV. Untersuchungen über die mikrobielle Verwitterung von Kalkstein im Karst. Zeitschrift f Allg Mikrobiologie 5(1): 52- 76

    Google Scholar 

  • Wagner M, Rath G, Koops H-P, Flood J & Amann R (1996) In situ analysis of nitrifying bacteria in sewage treatment plants. Wat Sci Tech 34(1- 2): 237- 244

    Google Scholar 

  • Wainwright M, Ali TA & Barakah F (1993) A review of the role of oligotrophic microorganisms in biodeterioration. Int Biodet Biodeg 31: 1- 13

    Google Scholar 

  • Warscheid T & Krumbein WE (1996) General aspects and selected cases. In: Heitz E, Flemming H-C, Sand W (eds) Microbially influenced corrosion of materials (pp 273- 295). Springer, Berlin, Heidelberg

    Google Scholar 

  • Warscheid T, Oelting M & Krumbein WE (1991) Physico-chemical aspects of biodeterioration processes on rocks with special regard to organic pollution. Int Biodet 28: 37- 48

    Google Scholar 

  • Warscheid T, Becker TW, Braams J, Brüggerhoff S, Gehrmann C, Krumbein WE & Petersen K (1993) Studies on the temporal development of microbial infection of different types of sedimentary rocks and its effect on the alteration of the physico-chemical properties in building materials. In: Thiel MJ (Ed) Proceedings of the International RILEM/UNESCO Congress ‘Conservation of stone and other materials’, vol 1 (pp 303- 310). E & FN Spon, London

    Google Scholar 

  • Webb AH, Bawden RJ, Busky AK & Hopkins JN (1992) Studies on the effects of air pollution on limestone degradation in Great Britain. Atmos Environ 26B(2): 165- 181

    Google Scholar 

  • Wilimzig M (1996) Biodeterioration of building materials like brick and mortar. In: DECHEMA (Ed) Biodeterioration and Biodegradation-DECHEMA Monographs vol 133 (pp 177- 183). VCH, Weinheim

    Google Scholar 

  • Wilimzig M & Bock E (1994) Mikrobielle Werkstoffzerstörung - Simulation, Schadensfälle und Gegenmaß nahmen für anorganische nichtmetallische Werkstoffe: Befall von Mörtel mit Bakterien und Pilzen. Werkstoffe und Korrosion 45(2): 117- 118

  • ____ (1996) Attack of mortar by bacteria and fungi. In: Heitz E, Flemming H-C, Sand W (Eds) Microbially influenced corrosion of materials (pp 311- 323). Springer, Berlin, Heidelberg

    Google Scholar 

  • Wilimzig M, Fahrig N & Bock E (1992) Biologically influenced corrosion of stones by nitrifying bacteria. In: Delgado J, Henriques F, Telmo Jeremias F (Eds) Proceedings of the 7th International Congress on Deterioration and Conservation of Stone (pp 459- 469). Lisboa

  • Wilimzig M, Schmidt A, Kuß maul M, Sand W & Bock E (1995) Bildung und Abbau von Methan in Steinen historischer Bauten. In: Snethlage R (Ed) Jahresberichte Steinzerfall-Steinkonservierung - 1993, vol 5 (pp 59- 63). Ernst & Sohn, Berlin

    Google Scholar 

  • Zart D & Bock E (1998) High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermenter with complete biomass retention in the presence of gaseous NO2 or NO. Arch Microbiol 169: 282- 286

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansch, R., Bock, E. Biodeterioration of natural stone with special reference to nitrifying bacteria. Biodegradation 9, 47–64 (1998). https://doi.org/10.1023/A:1008381525192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008381525192

Navigation