Skip to main content
Log in

13C spin relaxation measurements in RNA: Sensitivity and resolution improvement using spin-state selective correlation experiments

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A set of new NMR pulse sequences has been designed for the measurement of 13C relaxation rate constants in RNA and DNA bases: the spin-lattice relaxation rate constant R(Cz), the spin-spin relaxation rate constant R(C+), and the CSA-dipolar cross-correlated relaxation rate constant \(\Gamma _{C,CH}^{xy}\). The use of spin-state selective correlation techniques provides increased sensitivity and spectral resolution. Sensitivity optimised C-C filters are included in the pulse schemes for the suppression of signals originating from undesired carbon isotopomers. The experiments are applied to a 15% 13C-labelled 33-mer RNA–theophylline complex. The measured \({{R\left( {C_+} \right)} \mathord{\left/ {\vphantom {{R\left( {C_+} \right)} {\Gamma _{C,CH}^{xy} }}} \right. \kern-\nulldelimiterspace} {\Gamma _{C,CH}^{xy} }}\) ratios indicate that 13C CSA tensors do not vary significantly for the same type of carbon (C2, C6, C8), but that they differ from one type to another. In addition, conformational exchange effects in the RNA bases are detected as a change in the relaxation decay of the narrow 13C doublet component when varying the spacing of a CPMG pulse train. This new approach allows the detection of small exchange effects with a higher precision compared to conventional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akke, M. and Palmer III, A.G. (1996) J. Am. Chem. Soc., 118, 911–912.

    Google Scholar 

  • Akke, M., Fiala, R., Jiang, F., Patel, D. and Palmer III, A.G. (1997) RNA, 3, 702–709.

    Google Scholar 

  • Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G. and Taylor, R. (1987) J. Chem. Soc. Perkin. Trans. II, S1–S19.

    Google Scholar 

  • Andersson, P., Annila, A. and Otting, G. (1998) J. Magn. Reson., 133, 364–367.

    Google Scholar 

  • Bloom, M., Reeves, L.W. and Wells, E.J. (1965) J. Chem. Phys., 42, 1615–1624.

    Google Scholar 

  • Borer, P.N., LaPlante, S.R., Kumar, A., Zanatta, N., Martin, A., Hakkinen, A. and Levy, G.C. (1994) Biochemistry, 33, 2441–2450.

    Google Scholar 

  • Brutscher, B., Brüschweiler, R. and Ernst, R.R. (1997) Biochemistry, 36, 13043–13053.

    Google Scholar 

  • Brutscher, B., Boisbouvier, J., Pardi, A., Marion, D. and Simorre, J.-P. (1998) J. Am. Chem. Soc., 120, 11845–11851.

    Google Scholar 

  • Cate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Kundrot, C.E., Cech, T.R. and Doudna, J.A. (1996) Science, 273, 1678–1685.

    Google Scholar 

  • Cavanagh, J., Fairbrother, W.J., Palmer III, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy, Academic Press Inc., San Diego, CA.

    Google Scholar 

  • Cordier, F., Dingley, A.J. and Grzesiek, S. (1999) J. Biomol. NMR, 13, 175–180.

    Google Scholar 

  • Deverell, C., Morgan, R.E. and Strange, J.H. (1970) Mol. Phys., 4, 553–559.

    Google Scholar 

  • Dietrich, W., Rüdel, C.H. and Neumann, M. (1991) J. Magn. Reson., 91, 1–11.

    Google Scholar 

  • Fushman, D. and Cowburn, D. (1998) J. Am. Chem. Soc., 120, 7109–7110.

    Google Scholar 

  • Fushman, D., Tjandra, N. and Cowburn, D. (1998) J. Am. Chem. Soc., 120, 10947–10952.

    Google Scholar 

  • Goldman, M. (1984) J. Magn. Reson., 60, 437–452.

    Google Scholar 

  • Ishima, R., Wingfield, P.T., Stahl, S.J., Kaufman, J.D. and Torchia, D.A. (1998) J. Am. Chem. Soc., 120, 10534–10542.

    Google Scholar 

  • Jenison, R.D., Gill, S.C., Pardi, A. and Polisky, B. (1994) Science, 263, 1425–1429.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.

    Google Scholar 

  • Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. and Torchia, D.A. (1992) J. Magn. Reson., 97, 359–375.

    Google Scholar 

  • Kojima, C., Ono, A., Kainosho, M. and James, T.L. (1998) J. Magn. Reson., 135, 310–333.

    Google Scholar 

  • Kroenke, C.D., Loria, J.P., Lee, L.K., Rance, M. and Palmer III, A.G. (1998) J. Am. Chem. Soc., 120, 7905–7915.

    Google Scholar 

  • Legault, P. and Pardi, A. (1994) J. Magn. Reson., B103, 82–86.

    Google Scholar 

  • Legault, P., Li, J., Mogridge, J., Kay, L.E. and Greenblatt, J. (1998) Cell, 93, 289–299.

    Google Scholar 

  • Liu, H., Tonelli, M. and James, T. L. (1996) J. Magn. Reson., B111, 85–89.

    Google Scholar 

  • Loria, J.P., Rance, M. and Palmer III, A.G. (1999) J. Am. Chem. Soc., 121, 2331–2332.

    Google Scholar 

  • Meiboom, S. and Gill, D. (1958) Rev. Sci. Instrum., 29, 688–691.

    Google Scholar 

  • Meissner, A., Duus, J.Ø. and Sørensen, O.W. (1997) J. Magn. Reson., 128, 92–97.

    Google Scholar 

  • Ottiger, M., Delaglio, F. and Bax, A. (1998) J. Magn. Reson., 131, 373–378.

    Google Scholar 

  • Palmer III, A.G., Cavanagh, J., Wright, P. and Rance, M. (1991) J. Magn. Reson., 93, 151–170.

    Google Scholar 

  • Paquet, F., Gaudin, F. and Lancelot, G. (1996) J. Biomol. NMR, 8, 252–260.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1995) Biochemistry, 34, 16733–16752.

    Google Scholar 

  • Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366–12371.

    Google Scholar 

  • Pervushin, K., Wider, G. and Wüthrich, K. (1998a) J. Biomol. NMR, 12, 345–348.

    Google Scholar 

  • Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1998b) J. Am. Chem. Soc., 120, 6394–6400.

    Google Scholar 

  • Phan, I.Q.H., Boyd, J. and Campbell, I.D. (1996) J. Biomol. NMR, 8, 369–378.

    Google Scholar 

  • Rance, M., Loria, J.P. and Palmer III, A.G. (1999) J. Magn. Reson., 136, 92–101.

    Google Scholar 

  • Shaka, A.J., Freeman, R. and Barker, P.B. (1985) J. Magn. Reson., 64, 547–552.

    Google Scholar 

  • Sitkoff, D. and Case, D. (1998) Prog. NMR Spectr., 32, 165–190.

    Google Scholar 

  • Spielmann, H.P. (1998) Biochemistry, 37, 16863–16876.

    Google Scholar 

  • Veeman, W. (1984) Prog. NMR Spectrosc., 16, 193–235.

    Google Scholar 

  • Wand, A.J., Bieber, R.J., Urbauer, J.L., McEvoy, R.P. and Gan, Z. (1995) J. Magn. Reson., B108, 173–175.

    Google Scholar 

  • Wang, A.C., Kim, S.G., Flynn, P., Chou, S.H., Orban, J. and Reid, B. (1992) Biochemistry, 31, 3940–3946.

    Google Scholar 

  • Williamson, J.R. and Boxer, S.G. (1989) Biochemistry, 28, 2819–2831.

    Google Scholar 

  • Yamazaki, T., Muhandiram, R. and Kay, L.E. (1994) J. Am. Chem. Soc., 116, 8266–8278.

    Google Scholar 

  • Zimmermann, G.R., Jenison, R.D., Wick, C.L., Simorre, J.-P. and Pardi, A. (1997) Nat. Struct. Biol., 4, 644–649.

    Google Scholar 

  • Zimmermann, G.R., Shields, T.P., Jenison, R.D., Wick, C.L. and Pardi, A. (1998) Biochemistry, 37, 9186–9192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisbouvier, J., Brutscher, B., Simorre, JP. et al. 13C spin relaxation measurements in RNA: Sensitivity and resolution improvement using spin-state selective correlation experiments. J Biomol NMR 14, 241–252 (1999). https://doi.org/10.1023/A:1008365712799

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008365712799

Navigation