Skip to main content
Log in

Calculations of NMR dipolar coupling strengths in model peptides

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Ab initio MP2 and density functional quantum chemistry calculations are used to explore geometries and vibrational properties of N-methylacetamide and of the alanine dipeptide with backbone angles characteristic of helix and sheet regions in proteins. The results are used to explore one-bond direct dipolar couplings for the N–H, Cα–Hα, C′–N, and Cα–C′ bonds, as well as for the two-bond C′–H interaction. Vibrational averaging affects these dipolar couplings, and these effects can be expressed as effective bond lengths that are 0.5–3% larger than the true bond lengths; bending and torsion vibrations have a bigger influence on the effective coupling than do stretching vibrations. Because of zero-point motion, these effects are important even at low temperature. Hydrogen bonding interactions at the amide group also increase the N-H effective bond length. Although vibrational contributions to effective bond lengths are small, they can have a significant influence on the extraction of order parameters from relaxation data, and a knowledge of relative bond lengths is needed when several types of dipolar couplings are to be simultaneously used for refinement. The present computational results are compared to both solid- and liquid-state NMR experiments. The analysis suggests that secondary structural elements in many proteins may be more rigid than is commonly thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam, A. (1961) Principles of Nuclear Magnetism, Clarendon Press, Oxford.

    Google Scholar 

  • Akke, M., Brüschweiler, R. and Palmer III, A.G. (1993) J. Am. Chem. Soc., 115, 9832-9833.

    Google Scholar 

  • Brooks III, C.L. and Case, D.A. (1993) Chem. Rev., 93, 2487-2502.

    Google Scholar 

  • Brüschweiler, R. (1992) J. Am. Chem. Soc., 114, 5341-5344.

    Google Scholar 

  • Brüschweiler, R. and Case, D.A. (1994a) Prog. NMR Spectrosc., 26, 27-58.

    Google Scholar 

  • Brüschweiler, R. and Case, D.A. (1994b) Phys. Rev. Lett., 72, 940-943.

    Google Scholar 

  • Case, D.A., Pearlman, D.A., Caldwell III, J.C., Cheatham, T.E., Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., Vincent, J.J., Crowley, M., Ferguson, D.M., Radmer, R.J., Seibel, G.L., Singh, U.C., Weiner, P.K. and Kollman, P.A. (1997) AMBER 5, University of California, San Francisco, CA.

    Google Scholar 

  • Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A. (1995) J. Am. Chem. Soc., 117, 5179-5197.

    Google Scholar 

  • Cortis, C.M., Langlois, J.-M., Beachy, M.D. and Friesner, R.A. (1996) J. Chem. Phys., 105, 5472-5484.

    Google Scholar 

  • Engh, R.A. and Huber, R. (1991) Acta Crystallogr., A47, 392-400.

    Google Scholar 

  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, J.A., Cheeseman, J.R., Keith, T.A., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V.G., Ortiz, J.V., Foresman, J.B., Cioslowski, J., Stefanov, B.B., Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen,W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C. and Pople, J.A. (1995) Gaussian 94 (Revision B.2), Gaussian, Inc., Pittsburgh, PA.

    Google Scholar 

  • Fushman, D. and Cowburn, D. (1998) In Structure, Motion, Interaction and Expression of Biological Macromolecules (Eds R.H. Sarma and M.H. Sarma), Adenine Press, Albany, NY.

    Google Scholar 

  • Guo, H. and Karplus, M. (1992) J. Phys. Chem., 96, 7273-7287.

    Google Scholar 

  • Heaton, H.J., Vold, R.R. and Vold, R.L. (1989) J. Chem. Phys., 91, 56-62.

    Google Scholar 

  • Henry, E.R. and Szabo, A. (1985) J. Chem. Phys., 82, 4753-4761.

    Google Scholar 

  • Ishii, Y., Terao, T. and Hayashi, S. (1997) J. Chem. Phys., 107, 2760-2774.

    Google Scholar 

  • Kay, L.E. (1998) Nat. Struct. Biol., 5, 513-517.

    Google Scholar 

  • Kohn, W., Becke, A.D. and Parr, R.G. (1996) J. Phys. Chem., 100, 12974-12980.

    Google Scholar 

  • Kvick, A., Al-Karaghonli, A.R. and Koetzle, T.F. (1977) Acta Crystallogr., B33, 3796.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546-4559.

    Google Scholar 

  • McQuarrie, D.A. (1976) Statistical Mechanics, Harper and Row, New York, NY.

    Google Scholar 

  • Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 12334-12341.

    Google Scholar 

  • Palmer III, A.G. and Case, D.A. (1992) J. Am. Chem. Soc., 114, 9059-9067.

    Google Scholar 

  • Palmer III, A.G. (1997) Curr. Opin. Struct. Biol., 7, 732-737.

    Google Scholar 

  • Prestegard, J.H. (1998) Nat. Struct. Biol., 5, 517-522.

    Google Scholar 

  • Roberts, J.E., Harbison, G.S., Munowitz, M.G., Herzfeld, J. and Griffin, R.G. (1987) J. Am. Chem. Soc., 109, 4163-4169.

    Google Scholar 

  • Tjandra, N. and Bax, A. (1997) Science, 278, 1111-1114.

    Google Scholar 

  • Tjandra, N., Grzesiek, S. and Bax, A. (1996) J. Am. Chem. Soc., 118, 6264-6272.

    Google Scholar 

  • Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1995) Proc. Natl. Acad. Sci. USA, 92, 9279-9283.

    Google Scholar 

  • Torchia, D.A. (1996) In Encyclopedia of Nuclear Magnetic Resonance (Eds D.M. Grant and R.K. Harris), John Wiley, London, pp. 3785-3791.

    Google Scholar 

  • Yang, D. and Kay, L.E. (1996) J. Mol. Biol., 263, 369-382.

    Google Scholar 

  • Yang, D., Mok, Y.-K., Forman-Kay, J.D., Farrow, N.A. and Kay, L.E. (1997) J. Mol. Biol., 272, 790-804.

    Google Scholar 

  • Yip, P. and Case, D.A. (1991) In Computational Aspects of the Study of Biological Macromolecules by NMR Spectroscopy (Eds J. Hoch, F.M. Poulsen and C. Redfield), Plenum, New York, NY, pp. 317-330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Case, D.A. Calculations of NMR dipolar coupling strengths in model peptides. J Biomol NMR 15, 95–102 (1999). https://doi.org/10.1023/A:1008349812613

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008349812613

Navigation