Skip to main content
Log in

Assessing potential bias in the determination of rotational correlation times of proteins by NMR relaxation

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The various factors that influence the reliable and efficient determination of the correlation time describing molecular reorientation of proteins by NMR relaxation methods are examined. Nuclear Overhauser effects, spin-lattice, and spin-spin relaxation parameters of 15N NMR relaxation in ubiquitin have been determined at 17.6, 14.1, 11.7 and 9.4 Tesla. This unusually broad set of relaxation parameters has allowed the examination of the influence of chemical shift anisotropy, the functional form of the model-free spectral density, and the reliability of determined spin- spin relaxation parameters on the characterization of global tumbling of the protein. Treating the 15N chemical shift anisotropy (CSA) as an adjustable parameter, a consensus value of −170 ± 15ppm for the breadth of the chemical shift tensor and a global isotropic correlation time of 4.1ns are found when using the model-free spectral density to fit T1 and NOE data from all fields. The inclusion of T2 relaxation parameters in the determination of the global correlation time results in its increase to 4.6ns. This apparent inconsistency may explain a large portion of the discrepancy often found between NMR- and fluorescence-derived τm values for proteins. The near identity of observed T2 and T1ρ values suggests that contributions from slow motions are not the origin of the apparent inconsistency with obtained T1 and NOE data. Various considerations suggest that the origin of this apparent discrepancy may reside in a contribution to the spectral density at zero frequency that is not represented by the simple model-free formalism in addition to the usual experimental difficulties associated with the measurement of these relaxation parameters. Finally, an axially symmetric diffusion tensor for ubiquitin is obtained using exclusively T1 and NOE data. A recommendation is reached on the types and combinations of relaxation data that can be used to reliably determine τm values. It is also noted that the reliable determination of τm values from 15N T1 and NOE relaxation parameters will become increasingly difficult as τm increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam, A. (1961) Principles of Nuclear Magnetism, Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Akke, M. and Palmer, A.G. (1996) J. Am. Chem. Soc., 118, 911–912.

    Google Scholar 

  • Akke, M., Liu, J., Cavanagh, J., Erickson, H.P. and Palmer, A.G. (1998) Nat. Struct. Biol., 5, 55–59.

    Google Scholar 

  • Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. and Bax, A. (1992) Biochemistry, 31, 5269–5278.

    Google Scholar 

  • Blackledge, M., Cordier, F., Dosset, P. and Marion, D. (1998) J. Am. Chem. Soc., 120, 4538–4539.

    Google Scholar 

  • Brüschweiler, R., Liao, X. and Wright, P.E. (1995) Science, 268, 886–889.

    Google Scholar 

  • Buck, M., Boyd, J., Redfield, C., MacKenzie, D.A., Jeenes, D.J., Archer, D.B. and Dobson, C.M. (1995) Biochemistry, 34, 4041–4055.

    Google Scholar 

  • Cantor, C.R. and Schimmel, P.R. (1980) Biophysical Chemistry, W.H. Freeman and Company, New York, NY.

    Google Scholar 

  • Cordier, F., Brutscher, B. and Marion, D. (1996) J. Biomol. NMR, 7, 163–168.

    Google Scholar 

  • Dellwo, M.J. and Wand, A.J. (1989) J. Am. Chem. Soc., 111, 4571–4578.

    Google Scholar 

  • Dellwo, M.J. and Wand, A.J. (1991) J. Magn. Reson., 91, 505–516.

    Google Scholar 

  • Di Stefano, D.L. and Wand, A.J. (1987) Biochemistry, 26, 7272–7281.

    Google Scholar 

  • Deverell, C., Morgan, R.E. and Strange, J.H. (1970) Mol. Phys., 18, 553–559.

    Google Scholar 

  • Dubin, S.B., Clark, N.A. and Benedek, G.B. (1971) J. Chem. Phys., 14, 5138–5164.

    Google Scholar 

  • Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994) Biochemistry, 33, 5984–6003.

    Google Scholar 

  • Frauenfelder, H. and Wolynes, P.G. (1985) Science, 229, 337–345.

    Google Scholar 

  • Frauenfelder, H., Sligar, S.G. and Wolynes, P.G. (1991) Science, 254, 1598–1603.

    Google Scholar 

  • Goldman, M. (1984) J. Magn. Reson., 60, 437–452.

    Google Scholar 

  • Hiyama, Y., Niu, C.H., Silverton, J.V., Bavoso, A. and Torchia, D.A. (1988) J. Am. Chem. Soc., 110, 2378–2383.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.

    Google Scholar 

  • Kemple, M.D., Yuan, P., Nollet, K.E., Fuchs, J.A., Silva, N. and Prendergast, F.G. (1994) Biophys. J., 66, 2111–2126.

    Google Scholar 

  • Korzhnev, D.M., Orekhov, V.Y. and Arseniev, A.S. (1997) J. Magn. Reson., 127, 184–191.

    Google Scholar 

  • Kowalewski, J. and Werbelow, L. (1997) J. Magn. Reson., 128, 144–148.

    Google Scholar 

  • Lee, L.K., Rance, M., Chazin, W.J. and Palmer, A.G. (1997) J. Biomol. NMR, 9, 287–298.

    Google Scholar 

  • Lefevre, J.F., Dayie, K.T., Peng, J.W. and Wagner, G. (1996) Biochemistry, 35, 2674–2686.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982a) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Google Scholar 

  • Nirmala, N.R. and Wagner, G. (1988) J. Am. Chem. Soc., 110, 7557–7558.

    Google Scholar 

  • Oas, T.G., Hartzell, C.J., Dahlquist, F.W. and Drobny, G.P. (1987) J. Am. Chem. Soc., 110, 2378–2383.

    Google Scholar 

  • Ottiger, M., Tjandra, N. and Bax, A. (1997) J. Am. Chem. Soc., 119, 9825–9830.

    Google Scholar 

  • Palmer, A.G., Skelton, N.J., Chazin, W.J., Wright, P.E. and Rance, M. (1992) Mol. Phys., 75, 699–711.

    Google Scholar 

  • Palmer, A.G., Hochstrasser, R.A., Millar, D.P., Rance, M. and Wright, P.E. (1993) J. Am. Chem. Soc., 115, 6333–6345.

    Google Scholar 

  • Palmer, A.G., Williams, J. and McDermott, A. (1996) J. Phys. Chem., 100, 13293–13310.

    Google Scholar 

  • Peng, J.W., Thanabal, V. and Wagner, G. (1991) J. Magn. Reson., 94, 82–100.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1994) Methods Enzymol., 239, 563–596.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in Fortran 77: The Art of Scientific Computing, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Raiford, D.S., Fisk, C.L. and Becker, E.D. (1979) Anal. Chem., 51, 2050–2051.

    Google Scholar 

  • Ross, A., Czisch, M. and King, G.C. (1997) J. Magn. Reson., 124, 355–365.

    Google Scholar 

  • Schurr, J.M., Babcock, H.P. and Fujimoto, B.S. (1994) J. Magn. Reson., B105, 211–224.

    Google Scholar 

  • Schneider, D.M., Dellwo, M.J. and Wand, A.J. (1992) Biochemistry, 31, 3645–3652.

    Google Scholar 

  • Simbrunner, J. and Stollberger, R. (1995) J. Magn. Reson., B109, 301–309.

    Google Scholar 

  • Sklenar, V., Torchia, D. and Bax, A. (1987) J. Magn. Reson., 73, 375–379.

    Google Scholar 

  • Tanford, C. (1961) Physical Chemistry of Macromolecules, John Wiley and Sons, Inc., New York, NY.

    Google Scholar 

  • Taylor, J.R. (1982) An Introduction to Error Analysis, University Science Books, Mill Valley.

    Google Scholar 

  • Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc., 117, 12562–12566.

    Google Scholar 

  • Tjandra, N., Szabo, A. and Bax, A. (1996a) J. Am. Chem. Soc., 118, 6986–6991.

    Google Scholar 

  • Tjandra, N., Wingfield, P., Stahl, S. and Bax, A. (1996b) J. Biomol. NMR, 8, 273–284.

    Google Scholar 

  • Wand, A.J., Urbauer, J.L., McEvoy, R.P. and Bieber, R.J. (1996) Biochemistry, 35, 6116–6125.

    Google Scholar 

  • Wang, J. and Wolynes, P.G. (1993) Chem. Phys. Lett., 212, 427–433.

    Google Scholar 

  • Zeng, L., Fischer, M.W.F. and Zuiderweg, E.R.P. (1996) J. Biomol. NMR, 7, 157–162.

    Google Scholar 

  • Zhou, H.-X. and Zwanzig, R. (1991) J. Chem. Phys., 94, 6147–6152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, A.L., Wand, A.J. Assessing potential bias in the determination of rotational correlation times of proteins by NMR relaxation. J Biomol NMR 13, 101–112 (1999). https://doi.org/10.1023/A:1008304220445

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008304220445

Navigation