Abstract
When computing descriptors of image data, the type of information that can be extracted may be strongly dependent on the scales at which the image operators are applied. This article presents a systematic methodology for addressing this problem. A mechanism is presented for automatic selection of scale levels when detecting one-dimensional image features, such as edges and ridges.
A novel concept of a scale-space edge is introduced, defined as a connected set of points in scale-space at which: (i) the gradient magnitude assumes a local maximum in the gradient direction, and (ii) a normalized measure of the strength of the edge response is locally maximal over scales. An important consequence of this definition is that it allows the scale levels to vary along the edge. Two specific measures of edge strength are analyzed in detail, the gradient magnitude and a differential expression derived from the third-order derivative in the gradient direction. For a certain way of normalizing these differential descriptors, by expressing them in terms of so-called γ-normalized derivatives, an immediate consequence of this definition is that the edge detector will adapt its scale levels to the local image structure. Specifically, sharp edges will be detected at fine scales so as to reduce the shape distortions due to scale-space smoothing, whereas sufficiently coarse scales will be selected at diffuse edges, such that an edge model is a valid abstraction of the intensity profile across the edge.
Since the scale-space edge is defined from the intersection of two zero-crossing surfaces in scale-space, the edges will by definition form closed curves. This simplifies selection of salient edges, and a novel significance measure is proposed, by integrating the edge strength along the edge. Moreover, the scale information associated with each edge provides useful clues to the physical nature of the edge.
With just slight modifications, similar ideas can be used for formulating ridge detectors with automatic selection, having the characteristic property that the selected scales on a scale-space ridge instead reflect the width of the ridge.
It is shown how the methodology can be implemented in terms of straightforward visual front-end operations, and the validity of the approach is supported by theoretical analysis as well as experiments on real-world and synthetic data.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arcelli, C. and Sanniti di Baja, G. 1992. Ridge points in Euclidean distance maps. Pattern Recognition Letters, 13(4):237-242.
Bergholm, F. 1987. Edge focusing. IEEE Trans. Pattern Analysis and Machine Intell., 9(6):726-741.
Blum, H. and Nagel, H.-H. 1978. Shape description using weighted symmetry axis features. Pattern Recognition, 10:167-180.
Boyer, K.L. and Sarkar, S. 1991. On optimal infinite impulse response edge detection. IEEE Trans. Pattern Analysis and Machine Intell., 13(11):1154-1171.
Burbeck, C.A. and Pizer, S.M. 1995. Object representation by cores: Identifying and representing primitive spatial regions. Vision Research, in press.
Canny, J. 1986. A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intell., 8(6):679-698.
Crowley, J.L. and Parker, A.C. 1984. A representation for shape based on peaks and ridges in the difference of low-pass transform. IEEE Trans. Pattern Analysis and Machine Intell., 6(2):156-170.
Deriche, R. 1987. Using Canny’s criteria to derive a recursively implemented optimal edge detector. Int. J. of Computer Vision, 1:167-187.
Eberly, D., Gardner, R., Morse, B., Pizer, S., and Scharlach, C. 1994. Ridges for image analysis. J. of Mathematical Imaging and Vision, 4(4):353-373.
Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., and Viergever, M.A., 1992. Scale and the differential structure of images. Image and Vision Computing, 10(6):376-388.
Gauch, J.M. and Pizer, S.M. 1993. Multiresolution analysis of ridges and valleys in grey-scale images. IEEE Trans.Pattern Analysis and Machine Intell., 15(6):635-646.
Griffin, L.D., Colchester, A.C.F., and Robinson, G.P. 1992. Scale and segmentation of images using maximum gradient paths. Image and Vision Computing, 10(6):389-402.
ter Haar Romeny, B. (Ed.) 1994. Geometry-Driven Diffusion in Computer Vision. Kluwer Academic Publishers: Netherlands.
Haralick, R.M. 1983. Ridges and valleys in digital images. Computer Vision, Graphics, and Image Processing, 22:28-38.
Haralick, R.M. 1984. Digital step edges from zero-crossings of second directional derivatives. IEEE Trans. Pattern Analysis and Machine Intell., 6.
Koenderink, J.J. 1984. The structure of images. Biological Cybernetics, 50:363-370.
Koenderink, J.J. and van Doorn, A.J. 1992. Generic neighborhood operators. IEEE Trans. Pattern Analysis and Machine Intell., 14(6):597-605.
Koenderink, J.J. and van Doorn, A.J. 1994. Two-plus-onedimensional differential geometry. Pattern Recognition Letters, 15(5):439-444.
Koller, T.M., Gerig, G., Szèkely, G., and Dettwiler, D. 1995. Multiscale detection of curvilinear structures in 2-D and 3-D image data. In Proc. 5th Int. Conf. on Computer Vision, Cambridge, MA, pp. 864-869.
Korn, A.F. 1988. Toward a symbolic representation of intensity changes in images. IEEE Trans. Pattern Analysis and Machine Intell., 10(5):610-625.
Lindeberg, T. 1990. Scale-space for discrete signals. IEEE Trans. Pattern Analysis and Machine Intell., 12(3):234-254.
Lindeberg, T. 1991. Discrete scale-space theory and the scale-space primal sketch. Ph.D. Dissertation, Dept. of Numerical Analysis and Computing Science, KTH, ISRN KTH/NA/P-91/08-SE.
Lindeberg, T. 1993a. Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention. Int. J. of Computer Vision, 11(3):283-318.
Lindeberg, T. 1993b. Discrete derivative approximations with scalespace properties: A basis for low-level feature extraction. J. of Mathematical Imaging and Vision, 3(4):349-376.
Lindeberg, T. 1993c. On scale selection for differential operators. In Proc. 8th Scandinavian Conf. on Image Analysis, K. Heia, K.A. Høgdra, B. Braathen (Eds.), Tromsø, Norway.
Lindeberg, T. 1994a. Scale selection for differential operators. Technical Report ISRN KTH/NA/P-94/03-SE, Dept. of Numerical Analysis and Computing Science, KTH.
Lindeberg, T. 1994b. Scale-space theory: A basic tool for analysing structures at different scales. Journal of Applied Statistics, 21(2):225-270. Supplement Advances in Applied Statistics: Statistics and Images: 2.
Lindeberg, T. 1994c. Scale-Space Theory in Computer Vision. Kluwer Academic Publishers: Netherlands.
Lindeberg, T. 1995. Direct estimation of affine deformations of brightness patterns using visual front-end operators with automatic scale selection. In Proc. 5th Int. Conf. on Computer Vision, Cambridge, MA, pp. 134-141.
Lindeberg, T. 1996a. Feature detection with automatic scale selection. Technical Report ISRN KTH/NA/P-96/18-SE, Dept. of Numerical Analysis and Computing Science, KTH. Revised version in Int. Jrnl. Comp. Vision, 30(2), 1998.
Lindeberg, T. 1996b. Edge detection and ridge detection with automatic scale selection. Technical Report ISRN KTH/NA/P-96/06-SE, Dept. of Numerical Analysis and Computing Science, KTH.
Lindeberg, T. 1996c. Edge detection and ridge detection with automatic scale selection. In Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition, San Francisco, California, pp. 465-470.
Lindeberg, T. 1996d. A scale selection principle for estimating image deformations. Technical Report ISRN KTH/NA/P-96/16-SE Dept. of Numerical Analysis and Computing Science, KTH; Image and Vision Computing, in press.
Lorensen, W.E. and Cline, H.E. 1987. Marching cubes: A high resolution 3-D surface construction algorithm. Computer Graphics, 21(4):163-169.
Lu, Y. and Jain, R.C. 1989. Reasoning about edges in scale-space. IEEE Trans. Pattern Analysis and Machine Intell., 14(4):450-468.
Mallat, S.G. and Zhong, S. 1992. Characterization of signals from multi-scale edges. IEEE Trans. Pattern Analysis and Machine Intell., 14(7):710-723.
Marr, D. and Hildreth, E. 1980. Theory of edge detection. Proc. Royal Soc. London, 207:187-217.
Marr, D.C. 1976. Early processing of visual information. Phil. Trans. Royal Soc. (B), 27S:483-524.
Monga, O., Lengagne, R., and Deriche, R. 1994. Extraction of the zero-crossings of the curvature derivatives in volumic 3-D medical images: A multi-scale approach. In Proc. IEEE Comp. Soc. Conf. on ComputerVision andPattern Recognition, Seattle, Washington, pp. 852-855.
Morse, B.S., Pizer, S.M., and Liu, A. 1994. Multi-scale medial analysis of medical images. Image and Vision Computing, 12(6):327- 338.
Nalwa, V.S. and Binford, T.O. 1986. On detecting edges. IEEE Trans. Pattern Analysis and Machine Intell., 8(6):699-714.
Nitzberg, M. and Shiota, T. 1992. Non-linear image filtering with edge and corner enhancement. IEEE Trans. Pattern Analysis and Machine Intell., 14(8):826-833.
Ogniewicz, R.L. and Kübler, O. 1995. Hierarchic voronoi skeletons. Pattern Recognition, 28(3):343-359.
Perona, P. and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intell., 12(7):629-639.
Petrou, M. and Kittler, J. 1991. Optimal edge detectors for ramp edges. IEEE Trans. Pattern Analysis and Machine Intell., 13(5):483-491.
Pingle, K.K. 1969. Visual perception by computer. In Automatic Interpretation and Classification of Images, A. Grasselli (Ed.), Academic Press: New York, pp. 277-284.
Pizer, S.M., Burbeck, C.A., Coggins, J.M., Fritsch, D.S., and Morse, B.S. 1994. Object shape before boundary shape: Scale-space medial axis. J. of Mathematical Imaging and Vision, 4:303-313.
Poston, T. and Stewart, I. 1978. Catastrophe Theory and its Applications. Pitman: London.
Prewitt, J.M.S. 1970. Object enhancement and extraction. In Picture Processing and Psychophysics, A. Rosenfeld and B.S. Lipkin (Eds.), Academic Press: New York, pp. 75-149.
Roberts, L.G. 1965. Machine perception of three-dimensional solids. In Optical and Electro-Optical Information Processing, J.T. Tippet et al. (Eds.), MIT Press; Cambridge, MA, pp. 159-197.
Rohr, K. 1992. Modelling and identification of characteristic intensity variations. Image and Vision Computing, (2):66-76.
Rosenfeld, A. and Thurston, M. 1971. Edge and curve detection for visual scene analysis. IEEE Trans. Computers, 20(5):562- 569.
Saint-Marc, P., Chen, J.-S., and Medioni, G. 1991. Adaptive smoothing: A general tool for early vision. IEEE Trans. Pattern Analysis and Machine Intell., 13(6):514-529.
De Saint-Venant, 1852. Surfaces á a plus grande pente constituées sur des lignes courbes. Bull. Soc. Philomath. Paris.
Thirion, J.-P. and Gourdon, A. 1993. The marching lines algorithm: New results and proofs. Technical Report RR-1881-1, INRIA, Sophia-Antipolis, France.
Torre, V. and Poggio, T.A. 1980. On edge detection. IEEE Trans. Pattern Analysis and Machine Intell., 8(2):147-163.
Wilson, R. and Bhalerao, A.H. 1992. Kernel design for efficient multiresolution edge detection and orientation estimation. IEEE Trans. Pattern Analysis and Machine Intell., 14(3):384-390.
Witkin, A.P. 1983. Scale-space filtering. In Proc. 8th Int. Joint Conf. Art. Intell., Karlsruhe, West Germany, pp. 1019-1022.
Yuille, A.L. and Poggio, T.A. 1986. Scaling theorems for zerocrossings. IEEE Trans. Pattern Analysis and Machine Intell., 8:15-25.
Zhang, W. and Bergholm, F. 1993. An extension of Marr’s signature based edge classification and other methods for determination of diffuseness and height of edges, as well as line width. In Proc. 4th Int. Conf. on Computer Vision, H.-H. Nagel et al. (Eds.), Berlin, Germany, pp. 183-191, IEEE Computer Society Press.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lindeberg, T. Edge Detection and Ridge Detection with Automatic Scale Selection. International Journal of Computer Vision 30, 117–156 (1998). https://doi.org/10.1023/A:1008097225773
Issue Date:
DOI: https://doi.org/10.1023/A:1008097225773