Skip to main content
Log in

Identification and energetic ranking of possible docking sites for pterin on dihydrofolate reductase

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The reliability of new methodology for detecting sites for ligand binding on the surfaces of proteins has been tested using a range of dihydrofolate reductase (DHFR) crystal structures. Docking of the pterin molecule to ten such DHFR structures has been examined. Initial docking sites were selected using the VDW-FFT method we have developed recently. This procedure was followed by rigid geometry optimization and solvation energy calculations using our parametrized reaction field multipoles (PRFM) method and the finite difference solution of the Poisson equation (FDPB) method. Two different sets of MM parameters, from the OPLS and Amber94 force fields, have been used. In eight cases the energy of the complexes with pterin bound at the active site was the lowest with the recent Amber94 parameters. In one case the spurious first-ranked site was only 1.8 kcal/mol lower in energy compared with the active site. The other ‘failure’ of the method may, in fact, represent a valid initial binding site. The calculations with the old OPLS parameters gave slightly worse results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kollman, P.A., Curr. Opin. Struct. Biol., 4(1994) 240.

    Google Scholar 

  2. Aqvist, J., Medina, C. and Samuelsson, J.-E., Protein Eng., 7 (1994) 385.

    Google Scholar 

  3. Aqvist, J., J. Comput. Chem. 17 (1996) 1587.

    Google Scholar 

  4. Carlson, H.A. and Jorgensen, W.L., J. Phys. Chem., 99 (1995) 10667.

    Google Scholar 

  5. Gorse, A-D. and Gready, J.E., Prot. Eng., 10 (1997) 23.

    Google Scholar 

  6. Sharp, K.A. and Honig, B., Ann. Rev. Biophys. Biophys. Chem., 19 (1990) 301.

    Google Scholar 

  7. Honig, B., Sharp, K. and Yang, A., J. Phys. Chem., 97 (1993) 1101.

    Google Scholar 

  8. Sharp, K., Curr. Opin. Struct. Biol., 4 (1994) 234.

    Google Scholar 

  9. Shen, J. and Quiocho F.A., J. Comput. Chem., 16 (1995) 445.

    Google Scholar 

  10. Bamborough, P. and Cohen F.E., Curr. Opin. Struct. Biol., 6 (1996) 236.

    Google Scholar 

  11. Lengauer, T. and Rarey, M., Curr. Opin. Struct. Biol., 6 (1996) 402.

    Google Scholar 

  12. Lin, S.L. and Nussinov R., J. Mol. Graph., 14 (1996) 78.

    Google Scholar 

  13. Fischer, D., Lin, S.L., Wolfson, H.L. and Nussinov, R., J.Mol. Biol., 248 (1995) 459.

    Google Scholar 

  14. Kasinos, N., Lilley, G.A., Subbarao, N. and Haneel, I., Prot. Eng., 5 (1992) 69.

    Google Scholar 

  15. Ruppert, J., Welch, W. and Jain, A.N., Protein Science, 6 (1997), 524.

    Google Scholar 

  16. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C. and Vakser, I.A., Proc. Natl. Acad. Sci. USA, 89 (1992) 2195.

    Google Scholar 

  17. Vakser, I.A. and Aflalo, C., Proteins, 20 (1994) 320.

    Google Scholar 

  18. Harrison, R.W., Kourinov, I.V. and Andrews. L.C., Prot. Eng., 7 (1994) 359.

    Google Scholar 

  19. Bliznyuk, A.A. and Gready, J.E., J. Phys. Chem., 99 (1995) 14506.

    Google Scholar 

  20. Dennis, J.E., Jr. and Schnabel, R.B., Numerical methods for unconstrained optimization and nonlinear equations, Prentice Hall Inc., New York, 1983.

    Google Scholar 

  21. DelPhi program, Biosym Technologies version 2.5., 1993.

  22. Jorgensen, W.L. and Tirado-Rives, J., J. Am. Chem. Soc., 110 (1988) 1664.

    Google Scholar 

  23. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz., K.M. Jr., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Calwell, J.W. and Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 5179.

    Google Scholar 

  24. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F. Jr., Brice, M.D., Rodgers, J.D., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  25. Davies II, J.F., Delcamp, T.J., Prendergast, N.J., Ashford, V.A., Freisheim, J.H. and Kraut, J., Biochemistry, 29 (1990) 9467.

    Google Scholar 

  26. Oefner, C., D'Arcy, A. and Winkler, F.K., Eur. J. Biochem., 174 (1988) 377.

    Google Scholar 

  27. Morgan, W.D., Birdsall, B., Polshakov, V.I., Sali, D., Kompis, I. and Feeney, J., Biochemistry 34 (1995) 11690.

    Google Scholar 

  28. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1982) 13650.

    Google Scholar 

  29. McTigue, M.A., Davies II, J.F., Kaufman, B.T., Xuong, N-H. and Kraut, J., Biochemistry, 31 (1992) 7264.

    Google Scholar 

  30. Reyes, V.M., Sawaya, M.R., Brown, K.A. and Kraut, J., Biochemistry, 34 (1995) 2710.

    Google Scholar 

  31. Bystroff, C., Oatley, S.J. and Kraut, J., Biochemistry, 29 (1990) 3263.

    Google Scholar 

  32. Champness, J.N., Achari, A., Ballantine, S.P., Bryant, P.K., Delves, C.D. and Stammers, D.K., Structure, 2 (1994) 915.

    Google Scholar 

  33. Bystroff, C. and Kraut, J., Biochemistry, 30 (1991) 2227.

    Google Scholar 

  34. Insight II, version 95, October 1995. San Diego: Biosym/MSI, 1995.

  35. Ivery, M.T.G. and Gready, J.E., Biochemistry, 34 (1995) 3724.

    Google Scholar 

  36. Singh, U.C. and Kollman, P.A., J. Comput. Chem., 5 (1984) 129.

    Google Scholar 

  37. Besler, B.H., Merz, K.M., Jr. and Kollman, P.A., J. Comput. Chem., 11 (1990) 431.

    Google Scholar 

  38. Gaussian 94 (Revision C.2), Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T.A., Peterson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V.G., Ortiz, J.V., Foresman, J.B., Cioslowski, J., Stefanov, B.B., Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C. and Pople, J.A., Gaussian, Inc., Pittsburgh P.A., 1995.

    Google Scholar 

  39. Pranto, J., Wiershke, S.G. and Jorgensen, W., J. Am. Chem. Soc., 113 (1991) 2810.

    Google Scholar 

  40. Warshel, A. Computer modelling of chemical reactions in enzymes and solutions, John Wiley and Sons, Inc., New York, 1991.

    Google Scholar 

  41. Sawaya, M.R. and Kraut, J., Biochemistry, 36 (1997) 586.

    Google Scholar 

  42. Straatsma, T.P, Zacharias, M. and McCammon, J.A., In: van Gunsteren, W.F., Weiner, P.K. and Wilkinson, A.J. (Eds.) Computer Simulation of Biomolecular Systems, Vol. 2, ESCOM, Leiden, 1993, pp. 349–367.

    Google Scholar 

  43. Klein, C., Chen, P., Arevalo, J.H., Stura, E.A., Marolewski, A., Warren, M.S., Benkovic, S.J. and Wilson, I.A., J. Mol. Biol., 249 (1995) 153.

    Google Scholar 

  44. Narayana, N., Matthews, D.A., Howell, E.E. and Xuong, N., Nature Struct. Biol., 2 (1995) 1018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bliznyuk, A.A., Gready, J.E. Identification and energetic ranking of possible docking sites for pterin on dihydrofolate reductase. J Comput Aided Mol Des 12, 325–333 (1998). https://doi.org/10.1023/A:1008039000355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008039000355

Navigation