Skip to main content
Log in

How Many Endobains Are There?

  • Published:
Neurochemical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required to maintain cellular Na+/K+ gradients through the participation of the sodium pump (Na+,K+-ATPase), whose activity is selectively and potently inhibited by the alkaloid ouabain. Na+/K+ gradients are involved in nerve impulse propagation, in neurotransmitter release and cation homeostasis in the nervous system. Likewise, enzyme activity modulation is crucial for maintaining normal blood pressure and cardiovascular contractility as well as renal sodium excretion. The present article reviews the progress in disclosing putative ouabain-like substances, examines their denomination according to different research teams, tissue or biological fluid sources, extraction and purification, assays, biological properties and chemical and biophysical features. When data is available, comparison with ouabain itself is mentioned. Likewise, their potential action in normal physiology as well as in experimental and human pathology is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Albers, R. W. and Siegel, G. J. 1999. Membrane transport. Pages 95-118, in Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K., and Uhler, M. D., (eds.), Basic Neurochemistry, 6th edn., Lippincott-Raven, Philadelphia.

    Google Scholar 

  2. Skou, J. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochem. Biophys. Acta 23:394-401.

    Google Scholar 

  3. Stahl, W. L. 1986. The Na+, K+-ATPase of nervous tissue. Neurochem. Int. 8:449-476.

    Google Scholar 

  4. Kelly, R. A. and Smith, T. W. Pharmacological treatment of heart failure. 1996. Pages 809-838, in Hardman, J. G., and Limbird, L. E., (eds.), Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th edn., McGraw-Hill, New York.

    Google Scholar 

  5. Rodríguez de Lores Arnaiz, G. 1992. In search of synaptosomal Na+, K+-ATPase regulators. Mol. Neurobiol. 6:359-375.

    Google Scholar 

  6. Goto, A., Yamada, K., Yagi, N., Yoshioka, M., and Sugimoto, T. 1992. Physiology and pharmacology of endogenous digitalis-like factors. Pharmacol. Rev. 44:377-399.

    Google Scholar 

  7. Tamura, M., Lam, T. T., and Inagami, T. 1987. Specific endogenous Na+, K+-ATPase inhibitor purified from bovine adrenal. Biochem. Biophys. Res. Comm. 149:468-474.

    Google Scholar 

  8. Goto, A. and Yamada, K. 1998. Purification of endogenous digitalis-like factors from normal human urine. 1998. Clin Exp. Hypertens. 20:551-556.

    Google Scholar 

  9. Balzan, S., Ghione, S., Pieraccini, L., Biver, P., Di Bartolo, V., and Montali, U. 1994. Endogenous digitalis-like factor from umbilical cord and ouabain: comparison of biochemical properties. Pages 755-758, in Bamberg, E., and Schoner, W., (eds.), The Sodium Pump, Steinkopff, Darmstadt.

    Google Scholar 

  10. Martinka, E., Galajada, P., Ochodnicky, M., Lichardus, B., Straka, S., and Mokan, M. 1997. Endogenous digoxin-like immunoactivity and diabetes mellitus: facts and hypotheses. Med. Hypotheses 49:271-275.

    Google Scholar 

  11. Grider, G., El Mallakh, R. S., Huff, M. O., Buss, T. J., Miller, J., and Valdes, R. Jr. 1999. Endogenous digoxin-like immunoreactive factor (DLIF) serum concentrations are decreased in manic bipolar patients compared to normal controls. J. Affect. Disord. 54:261-267.

    Google Scholar 

  12. De Angelis, C., Riscazzi, M., Salvini, R., Piccoli, A., Ferri, C., and Santucci, A. 1997. Isolation and characterization of a digoxin-like immunoreactive substance from human urine by affinity chromatography. Clin. Chem. 43:1416-1420.

    Google Scholar 

  13. Bagrov, Y. Y., Dmitrieva, R. I., Manusova, N. B., Zvartau, E. E., Patkina, N. A., and Bagrov, A. Y. 1999. Involvement of endogenous digitalis-like factors in voluntary selection of alcohol by rats. Life Sci. 64:219-225.

    Google Scholar 

  14. Van Huysse, J. W. and Leenen, F. H. 1998. Role of endogenous brain “ouabain” in the sympathoexcitatory and pressor effects of sodium. Clin. Exp. Hypertens. 20:657-667.

    Google Scholar 

  15. Budzikowski, A. S., Huang, B. S., and Leenen, F. H. 1998. Brain “ouabain”, a neurosteroid, mediates sympathetic hyperactivity in salt-sensitive hypertension. Clin. Exp. Hypertens. 20:119-140.

    Google Scholar 

  16. Rodríguez de Lores Arnaiz, G. and Peñ a, C. 1995. Characterization of synaptosomal membrane Na+, K+-ATPase inhibitors. Neurochem. Int. 27:319-327.

    Google Scholar 

  17. Rodríguez de Lores Arnaiz, G., Reinés, A., Herbin, T., and Peñ a, C. 1998. Na+, K+-ATPase interaction with a brain endogenous inhibitor (endobain E). Neurochem. Int. 33:425-433.

    Google Scholar 

  18. Hamlyn, J. M., Lu, Z. R., Manunta, P., Ludens, J. H., Kimura, K., Shah, J. R., Laredo, J., Hamilton, J. P., Hamilton, M. J., and Hamilton, B. P. 1998. Observations on the nature, biosynthesis, secretion and significance of endogenous ouabain. Clin. Exp. Hypertens. 20:523-533.

    Google Scholar 

  19. Calderaro, V., Steffanini, R., Matera, M. G., Vacca, C., Dini, I., and Rossi, F. 1997. Physiological and pharmacological properties of an endogenous sodium pump inhibitor. Life Sci. 61:1457-1468.

    Google Scholar 

  20. Sancho, J. M. 1998. A non-ouabain Na / K ATPase inhibitor isolated from bovine hypothalamus. Its relation to hypothalamic ouabain. Clin. Exp. Hypertens. 20:535-542.

    Google Scholar 

  21. De Angelis, C. and Haupert, G. T. Jr. 1998. Hypoxia triggers release of an endogenous inhibitor of Na+, K+-ATPase from midbrain and adrenal. Am. J. Physiol. 274:F182-188.

    Google Scholar 

  22. Kramer, H. J., Krampitz, G., Bäcker, A., and Meyer Lehnert, H. 1998. Ouabain-like factors in human urine: identification of a Na-K-ATPase inhibitor as vanadium-diascorbate adduct. Clin. Exp. Hypertens. 20:557-571.

    Google Scholar 

  23. Ferrandi, M., Manunta, P., Balzan, S., Hamlyn, J. M., Bianchi, G., and Ferrari, P. 1997. Ouabain-like factor quantification in mammalian tissues and plasma: comparison of two independent assays. Hypertension 30:886-896.

    Google Scholar 

  24. Butt, A. N., Semra, Y. K., Ho, C. S., and Swaminathan, R. 1997. Effect of high salt intake on plasma and tissue concentration of endogenous ouabain-like substance in the rat. Life Sci. 61:2367-2373.

    Google Scholar 

  25. Pamnani, M. B., Swindall, B. T., Schooley, J. F., Ghai, R., and Haddy, F. J. 1999. Sodium-potassium pump inhibitor in the mechanism of one-kidney, one wrap hypertension in dogs. Cell Mol. Biol. 45:115-121.

    Google Scholar 

  26. Schneider, R., Wray, V., Nimtz, M., Lehmann, W. D., Kirch, U., Antolovic, R., and Schoner, W. 1998. Bovine adrenals contain, in addition to ouabain, a second inhibitor of the sodium pump. J. Biol. Chem. 273:784-792.

    Google Scholar 

  27. Rodríguez de Lores Arnaiz, G. 1993. An endogenous factor which interacts with synaptosomal membrane Na+, K+-ATPase activation by K+. Neurochem. Res. 18:655-661.

    Google Scholar 

  28. Vasdev, S. C., Longerich, L., Prabhakaran, V. M., Triggle, C. R., and Gault, M. H. 1989. Lipids as endogenous Na+, K+-ATPase inhibitors in plasma of healthy individuals and in dialysis dependent patients. Clin. Biochem. 22:313-319.

    Google Scholar 

  29. Tal, D. M., Yanuck, M. D., van Hall, G., and Karlish, S. J. D. 1989. Identification of Na+, K+-ATPase inhibitors in bovine plasma as fatty acids and hydrocarbons. Biochem. Biophys. Acta 985:55-59.

    Google Scholar 

  30. Cantley, L. C. Jr., Cantley, L. G., and Josephson, L. 1978. A characterization of vanadate interactions with the (Na,K)-ATPase. J. Biol. Chem. 253:7361-7368.

    Google Scholar 

  31. Bojorge, G. and Rodríguez de Lores Arnaiz, G. 1987. Insulin modifies Na+, K+-ATPase activity of synaptosomal membranes and whole homogenates prepared from rat cerebral cortex. Neurochem. Int. 11:11-16.

    Google Scholar 

  32. Battaini, F. and Peterkofsky, A. 1980. Histidyl-proline diketopiperazine, an endogenous brain peptide that inhibits (Na+, K+)-ATPase. Biochem. Biophys. Res. Comm. 94:240-247.

    Google Scholar 

  33. Rodríguez de Lores Arnaiz, G. and Ló pez Ordieres, M. G. 1997. A study of calcitonin effect on synaptosomal membrane enzymes. Peptides 18:613-615.

    Google Scholar 

  34. Ló pez Ordieres, M. G., Gironacci, M., Rodríguez de Lores Arnaiz, G., and Peñ a, C. 1998. Effect of angiotensin-(1-7) on ATPase activities in several tissues. Regulatory Peptides 77:135-139.

    Google Scholar 

  35. Ló pez Ordieres, M. G. and Rodríguez de Lores Arnaiz, G. 2000. Neurotensin inhibits neuronal Na+, K+-ATPase activity through high affinity peptide receptor. Peptides 21:571-576.

    Google Scholar 

  36. Wu, P. H. 1986. Na+, K+-ATPase in nervous tissue. Pages 451-502, in Boulton, A. A., Baker, G. B., and Wu, P. H., (eds.), Neuromethods, Enzymes, Humana Press, Clifton, NJ.

    Google Scholar 

  37. Rodríguez de Lores Arnaiz, G. and Mistrorigo de Pacheco, M. 1978. Regulation of (Na+,K+) adenosine triphosphatase of nerve ending membranes: action of norepinephrine and a soluble factor. Neurochem. Res. 3:733-744.

    Google Scholar 

  38. Rodríguez de Lores Arnaiz, G. 1983. Neuronal Na+, K+-ATPase and its regulation by catecholamines. Pages 147-158, in Caputto, R., and Ajmone Marsand, C., (eds.), Neural Transmission, Learning and Memory, Raven Press, New York.

    Google Scholar 

  39. Fishman, M. C. 1979. Endogenous digitalis-like activity in mammalian brain. Proc. Natl. Acad. Sci. USA 76:4661-4663.

    Google Scholar 

  40. Lichtstein, D. and Samuelov, S. 1980. Endogenous ouabain like activity in rat brain. Biochem. Biophys. Res. Comm. 96:1518-1523.

    Google Scholar 

  41. Akagawa, K., Hara, N., and Tsukada, Y. 1984. Partial purification and properties of the inhibitors of Na+, K+-ATPase and ouabain-binding in bovine central nervous system. J. Neurochem. 42:775-780.

    Google Scholar 

  42. Shimoni, Y., Gotsman, M., Deutsch, J., Kachalsky, S., and Lichtstein, D. 1984. Endogenous ouabain-like compound increases heart muscle contractility. Nature 307:369-371.

    Google Scholar 

  43. Rodríguez de Lores Arnaiz, G. and Antonelli de Gómez de Lima, M. 1986. Partial characterization of an endogenous factor which modulates the effect of catecholamines on synaptosomal Na+, K+-ATPase. Neurochem. Res. 11:933-947.

    Google Scholar 

  44. Haupert, G. T. and Sancho, J. M. 1979. Sodium transport inhibitor from bovine hypothalamus. Proc. Natl. Acad. Sci. USA 75:5735-5741.

    Google Scholar 

  45. Tymiak, A. A., Norman, J. A., Bolgar, M., Didonato, G. C., Lee, H., Parker, W. L., Lo, L. C., Berova, N., Nakanishi, K., Haber, E., and Haupert, G. T. Jr. 1993. Physicochemical characterization of a ouabain isomer isolated from bovine hypothalamus. Proc. Natl. Acad. Sci. USA 90:8189-8193.

    Google Scholar 

  46. Zhao, N., Lo, L., Berova, N., Nakanishi, K., Tymiak, A. A., Ludens, J., and Haupert, G. 1995. Na,K-ATPase inhibitors from bovine hypothalamus and human plasma are different from ouabain: Nanogram scale CD structural analysis. Biochemistry 34:9893-9896.

    Google Scholar 

  47. Lichtstein, D., Gati I., Samuelov S., Berson D., Rozenman Y., Landau L., and Deutsch, J. 1993. Identification of digitalis-like compounds in human cataractous lenses. Eur. J. Biochem. 216:261-268.

    Google Scholar 

  48. Halperin, J. A. 1989. Digitalis-like properties of an inhibitor of the Na+, K+pump in human cerebrospinal fluid. J. Neurophysiol. Sci. 90:217-230.

    Google Scholar 

  49. Lichtstein, D., Minc, D., Bourrit, A., Deutsch, J., Karlish, S. J. D., Belmaker, H., Rimon, R., and Palo, J. 1985. Evidence for the presence of “ouabain like” compound in human cerebrospinal fluid. Brain Res. 325:13-19.

    Google Scholar 

  50. Ludens, J. H., Clark., M. A., Ducharme, D. W., Harris, D. W., Lutske, B. S., Mandel, F., Mathews, W. R., Sutter, D. M., and Hamlyn, J. M. 1991. Purification fron human plasma of an endogenous digitalis-like factor for structural analysis. Hypertension 17:923-929.

    Google Scholar 

  51. Hamlyn, J. M., Harris, D. W., Clark, M. A., Rogowski, A. C., White, R. J., and Ludens, J. H. 1989. Isolation and characterization of a sodium pump inhibitor from human plasma. Hypertension 13:681-689.

    Google Scholar 

  52. Hamlyn, J. M., Blaustein, M. P., Bova, S., DuCharme, D. W., Harris, D. W., Mandel, F., Mathews, W. R., and Ludens, J. H. 1991. Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. USA 88:6259-6263.

    Google Scholar 

  53. Crambert, G., Balzan, S., Paci, A., Decollogne, S., Montali, U., Ghione, S., and Leliè vre, L. G. 1997. Functional characterization of an endogenous digitalis-like factor in human newborn plasma. Ann. NY Acad. Sci. 834:621-625.

    Google Scholar 

  54. Fedorova, O. V., Anderson, D. E., and Bagrov, A. Y. 1998. Plasma marinobufagenin-like and ouabain-like immunoreactivity in adrenocorticotropin-treated rats. Am. J. Hypertens. 11:796-802.

    Google Scholar 

  55. Mathews, W. R., DuCharme, D. W., Hamlyn, J. M., Harris, D. W., Mandel, F., Clark, M. A., and Ludens, J. H. 1991. Mass spectral characterization of an endogenous digitalis-like factor from human plasma. Hypertension 17:930-935.

    Google Scholar 

  56. Bagrov, A. Y., Fedorova, O. V., Dmitrieva, R. I., Howald, W. N., Hunter, A. P., Kuznetsova, E. A., and Shpen, V. M. 1998. Characterization of a urinary bufodienolide Na+, K+-ATPase inhibitor in patients after acute myocardial infarction. Hypertension 31:1097-1103.

    Google Scholar 

  57. Tao, Q. F., Hollenberg, N. K., Price, D. A., and Graves, S. W. 1997. Sodium pump isoform specificity for the digitalis-like factor isolated from human peritoneal dialysate. Hypertension 29:815-821.

    Google Scholar 

  58. Hamlyn, J. M., Ringel, R., Schaeffer, J., Levinson, P. D., Hamilton, B. P., Kowarski, A. A., and Blaustein, M. P. 1982. A circulating inhibitor of (Na+, K+) ATPase associated with essential hypertension. Nature 300:650-652.

    Google Scholar 

  59. Nowicki, S., Enero, M. A., and Rodríguez de Lores Arnaiz, G. 1990. Diuretic and natriuretic effect of a brain soluble fraction that inhibits neuronal Na+, K+-ATPase. Life Sci. 47:1091-1098.

    Google Scholar 

  60. Vatta, M., Peñ a, C., Fernández, B., and Rodríguez de Lores Arnaiz, G. 1998. A brain Na+, K+-ATPase inhibitor (endobain E) enhances norepinephrine release in rat hypothalamus. Neuroscience 90:573-579.

    Google Scholar 

  61. Calviñ o, M. A., Peñ a, C., and Rodríguez de Lores Arnaiz, G. 1999. Differential effect of an endogenous Na+, K+-ATPase inhibitor on phosphoinositide hydrolysis in neonatal and adult rat brain cortex. J. Neurochem. 72 (Suppl.):S25B.

    Google Scholar 

  62. Di Bartolo, V., Balzan, S., Pieraccini, L., Ghione, S., Pegoraro, S., Biver, P., Revoltella, R., and Montali, U. 1995. Evidence for an endogenous ouabain-like immunoreactive factor in human plasma coeluted with ouabain on HPLC. Life Sci. 57:1417-1425.

    Google Scholar 

  63. Balzan, S., Montali, U., and Ghione, S. 1997. Evidence of an endogenous ouabain-like immunoreactive compound with digitalis-like properties in the human. Ann. NY Acad. Sci. 834:626-630.

    Google Scholar 

  64. Antonelli, M., Casillas, T., and Rodríguez de Lores Arnaiz, G. 1991. Effect of Na+, K+-ATPase modifiers on high-affinity ouabain binding determined by quantitative autoradiography. J. Neurosci. Res. 28:342-331.

    Google Scholar 

  65. Li, S., Eim, C., Kirch, U., Lang, R. E., and Schoner, W. 1998. Bovine adrenals and hypothalamus are a major source of proscillaridin A-and ouabain-immunoreactivities. Life Sci. 62:1023-1033.

    Google Scholar 

  66. Rodríguez de Lores Arnaiz, G., Alberici, M., and De Robertis, E. 1967. Ultrastructural and enzymic studies of cholinergic and non-cholinergic synaptic membranes isolated from brain cortex. J. Neurochem. 14:215-225.

    Google Scholar 

  67. Yoshida, H., Nagai, K., Ohashi, T., and Nakagawa, Y. 1969. K+-dependent phosphatase activity observed in the presence of both adenosine triphosphate and Na+. Biochem. Biophys. Acta 171:178-185.

    Google Scholar 

  68. Rodríguez de Lores Arnaiz, G., Antonelli de Gómez de Lima, M., and Girardi, E. 1988. Different properties of two brain fractions separated in Sephadex G-50 that modify synaptosomal ATPase activities. Neurochem. Res. 3:229-235.

    Google Scholar 

  69. Illescas, M., Ricote, M., Méndez, E., G.-Robles, R., and Sancho, J. 1990. Complete purification of two identical Na+-pump inhibitors isolated from bovine hypothalamus and hypophysis. FEBS Lett. 261:436-440.

    Google Scholar 

  70. Peñ a, C. and Rodríguez de Lores Arnaiz, G. 1997. Differential properties between an endogenous brain Na+, K+-ATPase inhibitor and ouabain. Neurochem. Res. 22:379-383.

    Google Scholar 

  71. Han, C. S., Tobin, T., Akera, T., and Brody, T. M. 1976. Effects of alkali metal cations on phospho-enzyme levels and [3H]ouabain binding to (Na++K+)-ATPase. Biochem. Biophys. Acta 429:993-1005.

    Google Scholar 

  72. Songu-Mize, E., Gunter, J. L., and Caldwell, R. W. 1989. Comparative ability of digoxin and an aminosugar cardiac glycoside to bind to and inhibit Na+, K+-adenosine triphosphatase. Effect of potassium. Biochem. Pharmacol. 38:3689-3695.

    Google Scholar 

  73. Goldstein, A., Goldstein, J. S., and Cox, B. M. 1975. A synthetic peptide with morphine-like pharmacologic action. Life Sci. 17:1643-1654.

    Google Scholar 

  74. Hansen, O. and Skou, J. C. 1973. A study on the influence of the concentration of Mg2+, Pi, K+, Na+, and Tris on (Mg2++Pi)-supported g-strophanthin binding to Na++K+)-activated ATPase from ox brain. Biochem. Biophys. Acta 311:51-66.

    Google Scholar 

  75. Hansen, O. 1984. Interaction of cardiac glycosides with (Na++K+)-activated ATPase. A biochemical link to digitalis-induced inotropy. Pharmacol. Rev. 36:143-163.

    Google Scholar 

  76. Gleitz, J. and Peters, M. 1997. Influence of extracellular K+concentration on the time-course of Na+, K+-ATPase inhibition by cardiac glycosides with fast and low binding kinetics. Eur. J. Pharmacol. 335:89-97.

    Google Scholar 

  77. Akera, T., Temma, K., Wiest, S. A., and Brody, T. M. 1978. Reduction of the equilibrium binding of cardiac glycosides and related compounds to Na+, K+-ATPase as a possible mechanism for the potassium-induced reversal of their toxicity. Naunyn-Schmiedeberg' Arch. Pharmacol. 304:157-165.

    Google Scholar 

  78. Akera, T., Ng, Y.-C., Shieh, I. S., Bero, E., Brody, T. M., and Braselton, W. E. 1985. Effects of K+on the interaction between cardiac glycosides and Na+, K+-ATPase. Eur. J. Pharmacol. 111:147-157.

    Google Scholar 

  79. Tamura, M., Harris, T. M., Konishi, F., and Inagami, T. 1993. Isolation and characterization of an endogenous Na+, K+-ATPase-specific inhibitor from pig urine. Eur. J. Biochem. 211:317-327.

    Google Scholar 

  80. Herbin, T., Peñ a, C., and Rodríguez de Lores Arnaiz, G. 1998. Kinetics of Na+, K+-ATPase inhibition by a rat brain endogenous factor (endobain E). Neurochem. Res. 23:33-37.

    Google Scholar 

  81. Rodríguez de Lores Arnaiz, G., Herbin, T., and Peñ a, C. 1998. A comparative study between ascorbic acid and a brain Na+, K+-ATPase inhibitor (endobain E). J. Neurochem. 70 (Suppl. 1): S60B.

    Google Scholar 

  82. Paton, W. D. M., Vizi, E. S., and Zar, M. A. 1971. The mechanism of acetylcholine release from parasympathetic nerves. J. Physiol. Lond. 215:819-848.

    Google Scholar 

  83. Vizi, E. S. 1972. Stimulation, by inhibition of (Na+, K+, Mg2+)-activated ATPase, of acetylcholine release in cortical slices from rat brain. J. Physiol. Lond. 226:95–117.

    Google Scholar 

  84. Vizi, E. S. 1978. Na+, K+-activated adenosinetriphosphatase as a trigger in transmitter release. Neuroscience 3:367–384.

    Google Scholar 

  85. Birks, R. I. 1963. The role of sodium ions in the metabolism of acetylcholine. Can. J. Biochem. Physiol. 39:2573–2597.

    Google Scholar 

  86. Gaitonde, B. B. and Joglekar, S. N. 1977. Mechanism of neurotoxicity of cardiotonic glycosides. Br. J. Pharmac. Chemother. 59:223–229.

    Google Scholar 

  87. García, A. G., García-Ló pez, E., Horga, J. F., Kirpekar, S. M., Montiel, C., and Sánchez-García, P. 1981. Potentiation of K+-evoked catecholamine release in the cat adrenal gland treated with ouabain. Br. J. Pharmacol. 74: 673-680.

    Google Scholar 

  88. Wakade, A. R. 1981. Facilitation of secretion of catecholamines from rat and guinea-pig adrenal glands in potassium-free medium or after ouabain. J. Physiol. (London) 313:481-498.

    Google Scholar 

  89. Pocock, G. 1983. Ion movements in isolated bovine adrenal medullary cells treated with ouabain. Mol. Pharmacol. 23: 681-697.

    Google Scholar 

  90. Vizi, E. S. and Oberfrank, F. 1992. Na+, K+-ATPase, its endogenous ligands and neurotransmitter release. Neurochem. Int. 20:11-17.

    Google Scholar 

  91. Rodríguez de Lores Arnaiz, G. and Pellegrino de Iraldi, A. 1991. The release of catecholamines by an endogenous factor that inhibits neuronal Na+, K+-ATPase. Micr. Electr. Biol. Cell. 15:93-106.

    Google Scholar 

  92. Balduini, W. and Costa, L. G. 1990. Characterization of ouabain-induced phosphoinositide hydrolysis in brain slices of the neonatal rat. Neurochem. Res. 15:1023-1030.

    Google Scholar 

  93. Calviñ o, M. A., Peñ a, C., and Rodríguez de Lores Arnaiz, G. 2000. Na+/Ca2+exchanger and voltage-dependent Ca2+channel participation in neonatal rat brain phosphoinositide hydrolysis stimulation by an endogenous Na+, K+-ATPase inhibitor. J. Neurochem. 74 (Suppl.):S19D.

    Google Scholar 

  94. Rodríguez de Lores Arnaiz, G., Schneider, P., and Peñ a, C. 1999. Brain soluble fractions which modulate Na+, K+-ATPase activity likewise modify muscarinic receptor. Neurochem. Res. 24:1417-1422.

    Google Scholar 

  95. Reinés, A., Peñ a, C., and Rodríguez de Lores Arnaiz, G. 1999. Ouabain and an endogenous Na+, K+-ATPase inhibitor modulate [3H]MK-801 binding to NMDA receptor. J. Neurochem. 72 (Suppl.):S78D.

    Google Scholar 

  96. Reinés, A., Peñ a, C., and Rodríguez de Lores Arnaiz, G. 2000. Decreased [3H]MK-801 binding to cerebral cortex nmda receptors by an endogenous Na+, K+-ATPase inhibitor. J. Neurochem. 74 (Suppl.):S65B.

    Google Scholar 

  97. Yamada, H. M., Naruse, M., Naruse, K., Demura, H., Takahashi, H., Yoshimura, M., and Ochi, J. 1992. Histological study on ouabain immunoreactivities in the mammalian hypothalamus. Neurosci. Lett. 141:143-146.

    Google Scholar 

  98. Ferrandi, M., Minotti, E., Salardi, S., Florio, M., Bianchi, G., and Ferrari, P. 1992. Ouabain-like factor in Milan hypertensive rats. Am. J. Physiol. 263:F739-F748.

    Google Scholar 

  99. Hamlyn, J. M. and Manunta, P. 1992. Ouabain, digitalis-like factors and hypertension. J. Hypertension 10(Suppl.):952-1178.

    Google Scholar 

  100. Antolovic, R., Kost, H., Mohadjerani, M., Linder, D., Linder, M., and Schoner, W. 1998. A specific binding protein for cardiac glycosides exists in bovine serum. J. Biol. Chem. 273:16259-16264.

    Google Scholar 

  101. Sweadner, K. 1989. Isozymes of Na+, K+-ATPase. Biochem. Biophys. Acta 988:185-220.

    Google Scholar 

  102. Berrebi-Bertrand, I., Maixent, J. M., Christe, G., and Leleiè vre, L. G. 1990. Two active Na/K-ATPases of high affinity for ouabain in adult rat brain membranes. Biochem. Biophys. Acta 1021:148-156.

    Google Scholar 

  103. Blaustein, M. P., Juhaszova, M., and Golovina, V. A. 1998. The cellular mechanism of action of cardiotonic steroids: a new hypothesis. Clin Exp. Hypertens. 20:691-703.

    Google Scholar 

  104. Bagrov, A. Y. and Fedorova, O. V. 1998. Effects of two putative endogenous digitalis-like factors, marinobufagenin and ouabain, on the Na+, K+-pump in human mesenteric arteries. J. Hypertens. 16:1953-1958.

    Google Scholar 

  105. Rodríguez de Lores Arnaiz, G. 1990. A study of tissue specificity of brain soluble fractions on Na+, K+-ATPase activity. Neurochem. Res. 15:289-294.

    Google Scholar 

  106. McGrail, K. M., Phillips, J. M., and Sweadner, K. J. 1991. Immunofluorescent localization of three Na+, K+-ATPase isozymes in the rat central nervous system: both neurons and glia express more than one Na+, K+-ATPase. J. Neurosci. 11: 381-391.

    Google Scholar 

  107. Calviñ o, M. A., Peñ a, C., and Rodríguez de Lores Arnaiz, G. 1998. Endogenous modulators of brain at early postnatal stages of rat development. Int. J. Devl. Neuroscience 16:97-102.

    Google Scholar 

  108. Kunes, J., Stolba, P., Pohlova, I., Jelinek, J., and Zicha, J. 1985. The importance of endogenous digoxin-like factors in rats with various forms of experimental hypertension. Clin. Exp. Hypert. A7:707.

    Google Scholar 

  109. Vizi, E. S., Oberfrank, F., Bernath, S., and Lichtstein, D. 1987. Noradrenaline releasing effect of an ouabain-like compound on pulmonary artery. Neuropharmacology 26:1541-1544.

    Google Scholar 

  110. Huang, B. S. and Leenen, F. H. H. 1995. Brain ouabain, sodium, and arterial baroreflex in spontaneous hypertensive rats. Hypertension 25 (part 2):814-817.

    Google Scholar 

  111. Leenen, F. H. H., Harmsen, E., Yu, H., and Ou, C. 1993. Effects of dietary sodium on central and peripheral ouabain-like activity in spontaneously hypertensive rats. Am. J. Physiol. 264:H2051-H2055.

    Google Scholar 

  112. Leenen, F. H. H., Harmsen, E., and Yu, H. 1994. Dietary sodium and central vs. peripheral ouabain-like activity in Dahl salt-sensitive vs. salt-resistant rats. Am. J. Physiol. 267:H1916-H1920.

    Google Scholar 

  113. Leenen, F. H. H., Huang, B. S., Yu, H., and Yuan, B. 1995. Brain “ouabain” mediates sympathetic hyperactivity in congestive heart failure. Circ. Res. 77:993-1000.

    Google Scholar 

  114. Reisine, T. and Pasternak, G. 1996. Opioid analgesics and antagonists. Pages 521-555, in Hardman, J. G., and Limbird, L. E., (eds.), Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th edn., McGraw-Hill, New York.

    Google Scholar 

  115. Pertwee, R. G. 1999. Pharmacology of cannabinoid receptor ligands. Curr. Med. Chem. 6:635-664.

    Google Scholar 

  116. Martin, B. R., Mechoulam, R., and Razdan, R. K. 1999. Discovery and characterization of endogenous cannabinoids. Life Sci. 65:573-595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lores Arnaiz, G.R. How Many Endobains Are There?. Neurochem Res 25, 1421–1430 (2000). https://doi.org/10.1023/A:1007620918408

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007620918408

Navigation