Skip to main content
Log in

Lead and catechol hematotoxicity in vitro using human and murine hematopoietic progenitor cells

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

In vitro cloning assays for hematopoietic myeloid and erythroid precursor cells have been used as screening systems to investigate the hematotoxic potential of environmental chemicals in humans and mice. Granulocyte-monocyte progenitors (CFU-GM) from human umbilical cord blood and from mouse bone marrow (Balb/c and B6C3F1) were cultured in the presence of lead and the benzene metabolite catechol. Erythroid precursors (BFU-E) from human umbilical cord blood were cultured in the presence of lead. The in vitro exposure of the human and murine cells resulted in a dose-dependent depression of the colony numbers. The concentration–effect relationship was studied. Results showed that:

(1) Based on calculated IC50 values, human progenitors are more sensitive to lead and catechol than are murine progenitors. The dose that caused a 50% decrease in colony formation after catechol exposure was 6 times higher for murine cells (IC50 = 24 μmol/L) than for human cord blood cells (IC50 = 4 μmol/L). Lead was 10–15 times more toxic to human hematopoietic cells (IC50 = 61 μmol/L) than to murine bone marrow cells from both mice strains tested (Balb/c, IC50 = 1060 μmol/L; B6C3F1, IC50 = 536 μmol/L).

(2) A lineage specificity was observed after exposure to lead. Human erythroid progenitors (hBFU-E) (IC50 = 3.31 μmol/L) were found to be 20 times more sensitive to the inhibitory effect of lead than were myeloid precursors (hCFU-GM) (IC50 = 63.58 μmol/L).

(3) Individual differences in the susceptibility to the harmful effect of lead were seen among cord blood samples.

(4) Toxicity of lead to progenitor cells occurred at environmentally relevant concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham NG. Haematopoietic effects of benzene inhalation assessed by long-term bone marrow culture. Environ Health Perspect. 1996;104:1277–87.

    PubMed  CAS  Google Scholar 

  • Alexander BH, Checkoway H, Costa-Mallen P et al. Interaction of blood lead and δ-aminolevulinic acid dehydratase genotype on markers of heme synthesis and sperm production in lead smelter workers. Environ Health Perspect. 1998;106:213–6.

    PubMed  CAS  Google Scholar 

  • Amess J. Haematotoxicology. In: Ballantyne B, Mars T, Turner P, eds. General and applied toxicology. New York: Stockton Press; 1993:839–67.

    Google Scholar 

  • Angerer J, Scherer G, Schaller KH, Muller J. The determination of benzene in human blood as an indicator of environmental exposure to volatile aromatic compounds. Fresenius J Anal Chem. 1991;339:740–2.

    Article  CAS  Google Scholar 

  • Aksoy M. Malignancies due to occupational exposure to benzene. Am J Ind Med. 1985;7:395–402.

    PubMed  CAS  Google Scholar 

  • Ashley DL, Bonin MA, Cardinali FL, McCraw JM, Wooten JV. Blood concentrations of volatile organic compounds in a nonoccupationally exposed US population and in groups with suspected exposure. Clin Chem. 1994;40:1401–4.

    PubMed  CAS  Google Scholar 

  • Bois FY, Jackson ET, Pekari K, Smith MT. Population toxicokinetics of benzene. Environ Health Perspect. 1996;104(6):1405–11.

    PubMed  CAS  Google Scholar 

  • Boucher A, Rio B, Guinard-Flament J, Parent-Massin D. In vitro effects of lead acetate on human erythroblastic progenitors. Toxicol Lett. 1998;95(1):127.

    Article  Google Scholar 

  • Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable haematopoietic stem/progenitor cells. Proc Natl Acad Sci USA. 1989;86:3828–32.

    Article  PubMed  CAS  Google Scholar 

  • Brugnone F, Perbelli L, Romeo L, et al. Environmental exposure and blood levels of benzene in gas station attendants: comparison with the general population. Med Lav. 1997;88:131–47.

    PubMed  CAS  Google Scholar 

  • Calderon-Salinas JV, Hernandez-Luna C, Valdez-Anaya B, Maldonado-Vega M, Lopez-Miranda A. Evolution of lead toxicity in a population of children. Hum Exp Toxicol. 1996;15:376–82.

    PubMed  CAS  Google Scholar 

  • Cikrt M, Smerhovsky Z, Blaha K, et al. Biological monitoring of child lead exposure in the Czech Republic. Environ Health Perspect. 1997;105:406–11.

    PubMed  CAS  Google Scholar 

  • Cronkite EP. Benzene hematotoxicity and leukemogenesis. Blood Cells. 1986;12:129–37.

    PubMed  CAS  Google Scholar 

  • Cronkite EP, Inoue T, Carsten AL, Miller ME, Bullis JE, Drew RT. Effects of benzene inhalation on murine pluripotent stem cells. J. Toxicol Environ Health. 1982;9:411–21.

    Article  PubMed  CAS  Google Scholar 

  • Church JJ, Day P, Braithwaite RA, Brown SS. The speciation of lead in erythrocytes in relation to lead toxicity: case study of two lead-exposed workers. Neurotoxicology. 1993;14:359–64.

    PubMed  CAS  Google Scholar 

  • Cory-Slechta DA. Lead poisoning. In: Corn M, ed. Handbook of hazardous materials. New York: Academic Press; 1993:411–29.

    Google Scholar 

  • Deldar A, Stevens CE. Development and application of in vitro models of hematopoiesis to drug development. Toxicol Pathol. 1993;21:231–40.

    Article  PubMed  CAS  Google Scholar 

  • Ennever FK, Zaccaro DJ, Fernando RA, Jones BT. Blood lead levels in North Carolina painters. Hum Exp Toxicol. 1995;14:456–61.

    PubMed  CAS  Google Scholar 

  • Fuller J, Woodman DD. Haematology in toxicology studies. In: Ballantyne B, Mars T, Turner P, eds. General and applied toxicology. New York: Stockton Press; 1993:267–302.

    Google Scholar 

  • Gribaldo L, Bueren A, Deldar A, et al. The use of in vitro systems for evaluating haematotocicity. ATLA. 1996;24:211–31.

    Google Scholar 

  • Goyer RA. Lead. In: Seiler HG, Sigel H, eds. Handbook on toxicity of inorganic compounds. New York: Marcel Dekker; 1988:359–82.

    Google Scholar 

  • Harris DT, Schumacher MJ, Rychlik S, et al. Collection, separation and cryopreservation of umbilical cord blood for use in transplantation. Bone Marrow Transplant. 1994;13:135–43.

    PubMed  CAS  Google Scholar 

  • Henderson RF, Sabourin PJ, Bechtold WE, et al. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites. Environ Health Perspect. 1989;82:9–18.

    PubMed  CAS  Google Scholar 

  • Jones TD, Morris MD, Hasan JS. Modeling marrow damage from response data: evolution from radiation biology to benzene toxicity. Environ Health Perspect. 1996;104:1293–302.

    PubMed  CAS  Google Scholar 

  • Kalf GF, Schlosser MJ, Renz JF, Pirozzi SJ. Prevention of benzene-induced myelotoxicity by nonsteroidal anti-inflammatory drugs. Environ Health Perspect. 1989;82:57–64.

    PubMed  CAS  Google Scholar 

  • Lautraite S, Parent-Massin D, Rio B, Hoellinger H. Comparison of toxicity induced by HT-2 toxin on human and rat granulo-monocytic progenitors with an in vitro model. Hum Exp Toxicol. 1996;15:208–13.

    PubMed  CAS  Google Scholar 

  • Leary AG, Zeng HQ, Clark SC, Ogawa M. Growth factor requirements for survival in G0 and entry into the cell cycle of primitive human haematopoietic progenitors. Proc Natl Acad Sci USA. 1992;89:4013–17.

    Article  PubMed  CAS  Google Scholar 

  • Lutton JD, Ibraham NG, Friedland M, Levere RD. The toxic effects of heavy metals on rat bone marrow in vitro erythropoiesis: protective role of hemin and zinc. Environ Res. 1984;35:97–103.

    Article  PubMed  CAS  Google Scholar 

  • Marley SB, Amos TAS, Gordon MY. Kinetics of colony formation by BFU-E grown under different culture conditions in vitro. Br J Haematol. 1996;92:559–61.

    Article  PubMed  CAS  Google Scholar 

  • Moolenaar RL, Hefflin BJ, Ashley DL, Middaugh JP, Etzel RA. Blood benzene concentrations in workers exposed to oxygenated fuel in Fairbanks' Alaska. Int Arch Occup Environ Health. 1997;69:139–43.

    Article  PubMed  CAS  Google Scholar 

  • Neumeier G. Criteria document for benzene. CEC. Occupational exposure limits. EUR 14491;1993.

  • Noble C, Sina JF. Usefulness of the in vitro bone marrow colony forming assay in cellular toxicology. In Vitro Toxicol. 1993;6:187–95.

    CAS  Google Scholar 

  • Parent-Massin D, Thouvenot D. In vitro study of pesticide hematotoxicity in human and rat progenitors. J Pharmacol Toxicol Meth. 1993; 30:203–7.

    Article  CAS  Google Scholar 

  • Parent-Massin D, Thouvenot D. In vitro toxicity of trichothecenes on rat haematopoietic progenitors. Food Addit Contam. 1995;12:41–9.

    PubMed  CAS  Google Scholar 

  • Parent-Massin D, Thouvenot D, Riche C. Lindane haematotoxicity confirmed by in vitro tests on human and rat progenitors. Hum Exp Toxicol. 1994;13:103–6.

    Article  PubMed  CAS  Google Scholar 

  • Romieu I, Lacasana M, McConnell R and the Lead Research Group of the Pan-American Health Organization. Lead exposure in Latin America and the Caribbean. Environ Health Perspect. 1997;105:398–405.

    Google Scholar 

  • Rubenstein P, Dobrila L, Rosenfield RE, et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci USA. 1995;92:10119–22.

    Article  Google Scholar 

  • San Roman J, Kamali V, Sibanda B, Weintraub JP, Gee JM, Naughton BA. Measurement of differential hematotoxicity using long-term bone marrow cultures. In Vitro Toxicol. 1994;7:291–9.

    CAS  Google Scholar 

  • Scheding S, Loeffler M, Schmitz S, Seidel HJ, Wichmann HE. Hematotoxic effects of benzene analysed by mathematical modeling. Toxicology. 1992;?:265–79.

    Google Scholar 

  • Schoeters GER, Vanderborght OLJ. Relative effectiveness of 241 Am versus 226Ra approached by haematopoietic stem cell studies in various bone marrow sites of contaminated mice. Health Phys. 1983;44:555–70.

    PubMed  CAS  Google Scholar 

  • Schoeters GER, Vander Plaetse F, Leppens H, Van Vlasselaer P, Van Den Heuvel R. Haematopoietic and osteogenic toxicity testing in vitro using murine bone marrow cultures. Toxicol In Vitro. 1995;9:421–8.

    Article  CAS  Google Scholar 

  • Seidel HJ, Barthel E, Zinser D. The haematopoietic stem cell compartments in mice during and after long-term inhalation of three doses of benzene. Exp Hematol. 1989a;17:300–3.

    PubMed  CAS  Google Scholar 

  • Seidel HJ, Beyvers G, Pape M, Barthel E. The influence of benzene on the erythroid cell system in mice. Exp Hematol. 1989b;17:760–4.

    PubMed  CAS  Google Scholar 

  • Seidel HJ, Barthel E, Schäfer F, Schad H, Weber L. Action of benzene metabolites on murine haematopoietic colony-forming cells in vitro. Toxicol Appl Pharmacol. 1991;111:128–31.

    Article  PubMed  CAS  Google Scholar 

  • Smith CM, Wang X, Hu H, Kelsey KT. Dehydratase gene may modify the pharmacokinetics and toxicity of lead. Environ Health Perspect. 1995;103:248–53.

    PubMed  CAS  Google Scholar 

  • Snyder R, Kalf G. A perspective on benzene leukomogenesis. CRC Crit Rev Toxicol. 1994;24:177–209.

    CAS  Google Scholar 

  • Snyder R, Hedli CC. An overview of benzene metabolism. Environ Health Perspect. 1996;104:1165–72.

    PubMed  CAS  Google Scholar 

  • Sutherland HJ, Eaves AD, Eaves CJ. Quantitative assays of human haematopoietic progenitor cells. In: Gee AP, ed. Bone marrow processing and purgin: a practical guide. Boca Raton: CRC Press; 1991:155–71.

    Google Scholar 

  • Todd AC, Wetmur JG, Moline JM, Godbold JH, Levin SM, Landrigan PJ. Unraveling the chronic toxicity of lead: an essential priority for environmental health. Environ Health Perspect. 1996;104:141–6.

    PubMed  CAS  Google Scholar 

  • Van Den Heuvel RL. Bone marrow from Balb/c mice radio-contaminated with 241Am in utero shows a deficient in vitro haematopoiesis. Int J Radiat Biol. 1990;57:103–15.

    PubMed  CAS  Google Scholar 

  • Van Den Heuvel RL, Schoeters G, Leppens H. Haematotoxicity testing in vitro using human cord blood haematopoietic cells. Toxicol In Vitro. 1997;11:689–93.

    Article  CAS  Google Scholar 

  • Wahid A, Koul PA, Shah SU, Khal AR, Bhat MS, Malik MA. Lead exposure in papier mâché workers. Hum Exp Toxicol. 1997;16:281–3.

    PubMed  CAS  Google Scholar 

  • Wierda D, Irons RD. Hydroquinone and catechol reduce the frequency of progenitor B lymphocytes in mouse spleen and bone marrow. Immunopharmacology. 1982;2:41–54.

    Article  Google Scholar 

  • Weisel C, Yu R, Roy A, Georgopoulos ? Biomarkers of environmental benzene exposure. Environ Health Perspect. 1996;104:1141–6.

    PubMed  CAS  Google Scholar 

  • WHO. Air quality guidelines for Europe (European Series no. 23). Geneva: World Health Organization; 1987:45–58, 242–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Den Heuvel, R., Leppens, H. & Schoeters, G. Lead and catechol hematotoxicity in vitro using human and murine hematopoietic progenitor cells. Cell Biol Toxicol 15, 101–110 (1999). https://doi.org/10.1023/A:1007573414306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007573414306

Navigation