Skip to main content
Log in

Structure and functional analyses of the 26S proteasome subunits from plants – Plant 26S proteasome

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

As initial steps to define how the 26S proteasome degrades ubiquitinated proteins in plants, we have characterized many of the subunits that comprise the proteolytic complex from Arabidopsis thaliana. A set of 23 Arabidopsis genes encoding the full complement of core particle (CP) subunits and a collection encoding 12 out of 18 known eukaryotic regulatory particle (RP) subunits, including six AAA-ATPase subunits, were identified. Several of these 26S proteasome genes could complement yeast strains missing the corresponding orthologs. Using this ability of plant subunits to functionally replace yeast counterparts, a parallel structure/function analysis was performed with the RP subunit RPN10/MCB1, a putative receptor for ubiquitin conjugates. RPN10 is not essential for yeast viability but is required for amino acid analog tolerance and degradation of proteins via the ubiquitin-fusion degradation pathway, a subpathway within the ubiquitin system. Surprisingly, we found that the C-terminal motif required for conjugate recognition by RPN10 is not essential for in vivo functions. Instead, a domain near the N-terminus is required. We have begun to exploit the moss Physcomitrella patens as a model to characterize the plant 26S proteasome using reverse genetics. By homologous recombination, we have successfully disrupted the RPN10 gene. Unlike yeast rpn10Δ strains which grow normally, Physcomitrella rpn10Δ strains are developmentally arrested, being unable to initiate gametophorogenesis. Further analysis of these mutants revealed that RPN10 is likely required for a developmental program triggered by plant hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hershko A & Ciechanover A (1998) Annu. Rev. Bioch. 67: 425–479

    Google Scholar 

  2. Ciechanover A (1994) Cell 79: 13–21

    Google Scholar 

  3. Hochstrasser M (1995) Curr. Opin. Cell Biol. 7: 215–223

    Google Scholar 

  4. Hochstrasser M (1996) Annu. Rev. Genet. 30: 405–439

    Google Scholar 

  5. Hershko A & Ciechanover A (1992) Annu. Rev. Biochem. 61: 761–807

    Google Scholar 

  6. Coux O, Tanaka K & Goldberg AL (1996) Anu. Rev. Biochem. 65: 801–847

    Google Scholar 

  7. Baumeister W, Walz J, Zuhl F & Seemuler E (1998) Cell 92: 367–380

    Google Scholar 

  8. Vierstra RD (1996) Plant Mol. Biol. 32: 275–302

    Google Scholar 

  9. Jabben M, Shanklin J & Vierstra RD (1989) J. Biol. Chem. 264: 4998–5005

    Google Scholar 

  10. Clough RC & Vierstra RD (1997) Plant Cell Environ. 20: 713–721

    Google Scholar 

  11. Lupas A & Baumeister W (1998) In: Peters JM, Harris JR & Finley D (ed.) Ubiquitin and the Biology of the Cell, Plenum Press, New York, pp. 127–146

    Google Scholar 

  12. Löwe J, Stock D, Jap F, Zwickl P & Baumeister W (1995) Science 268: 533–539

    Google Scholar 

  13. Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD & Huber R (1997) Nature 386: 463–471

    Google Scholar 

  14. Fu H, Doelling JH, Arendt CS, Hochstrasser M & Vierstra RD (1998) Genetics 149: 677–692

    Google Scholar 

  15. Glickman MH, Rubin DM, Fried VA & Finley D (1998) Mol. Cell. Biol. 18: 3149–3162

    Google Scholar 

  16. Finley D, Tanaka K, Mann C, Feldmann H, Hochstrasser M, et al. (1998) Trends Biochem. Sci. 23: 244–245

    Google Scholar 

  17. Beyer A (1997) Protein Sci. 6: 2043- 2058

  18. Arendt CS & Hochstrasser M (1997) Proc. Natl. Acad. Sci. USA 94: 7156–7161

    Google Scholar 

  19. Fu H, Sadis S, Rubin DM, Glickman MH, van Nocker S, Finley D & Vierstra, RD (1998). J. Biol. Chem. 273: 1970- 1989

  20. Deveraux Q, Ustrell V, Pickart C & Rechsteiner M (1994) J. Biol. Chem. 269: 7059–7061

    Google Scholar 

  21. van Nocker S, Deveraux Q, Rechsteiner M & Vierstra RD (1996) Proc. Natl. Acad. Sci. U. S. A. 93: 856–860

    Google Scholar 

  22. Ferrell K, Deveraux Q, van Nocker S & Rechsteiner M (1996) FEBS Lett. 381: 143–148

    Google Scholar 

  23. van Nocker S, Sadis S, Rubin DM, Glickman MH, Fu H, Coux O, Wefes I, Finley D & Vierstra RD (1996) Mol. Cell. Biol. 11: 6020–6028

    Google Scholar 

  24. Haracska L & Udvardy A (1995) Eur. J. Biochem. 231: 710–725

    Google Scholar 

  25. Girod PA, Fu H, Zyrd JP & Vierstra RD (1999) (submitted)

  26. Kominami K, Okura N, Kawamura M, DeMartino GN, Slaughter CA, Shimbara N, Chung CH, Fujimuro M, Yokosawa H, Shimizu Y, Tanahashi N, Tanaka K & Toh-e A (1997) Mol. Biol. Cell 8: 171–187

    Google Scholar 

  27. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA & Finley D (1998) Cell 94:615–623

    Google Scholar 

  28. Schaefer DG & Zryd J (1997) Plant J. 11: 1195–1206

    Google Scholar 

  29. Cove D J & Knight CD (1993) Plant Cell 5: 1483–1488

    Google Scholar 

  30. Ashton NW, Grimsley NH & Cove DJ (1979) Mol. Gen. Genetics 154: 87–95

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, H., Girod, PA., Doelling, J.H. et al. Structure and functional analyses of the 26S proteasome subunits from plants – Plant 26S proteasome. Mol Biol Rep 26, 137–146 (1999). https://doi.org/10.1023/A:1006926322501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006926322501

Navigation