Skip to main content
Log in

X-ray small angle scattering study of chromatin as a function of fiber length

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This work investigates the structure of native calf thymus chromatin as a function of fiber length and isolation procedures by using X-ray small angle scattering technique. Two methods of chromatin isolation have been compared in order to better understand the differences reported by various authors in terms of chromatin high order structure. In addition to these experimental results the effects of shearing have also been studied. In order to explain the differences among these chromatin preparations we built several models of chromatin fibers (represented as a chain of spherical subunits) assuming increasing level of condensation at increasing salt concentrations. For all these fiber models the corresponding theoretical X-ray scattering curves have been calculated and these results have been used to explain the influence of fiber length on the scattering profiles of chromatin. The comparison between experimental and theoretical curves confirms that the high molecular weight chromatin-DNA prepared by hypotonic swelling of nuclei (without enzymatic digestion) displays a partially folded structure even at low ionic strength, whereas the low molecular weight chromatin-DNA prepared by a brief nuclease digestion appears very weakly folded at the same ionic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Manning G (1978) Quart. Rev. Biophys. 11: 179

    Google Scholar 

  2. Belmont A & Nicolini C (1981) J. Theor. Biol. 90: 169

    Google Scholar 

  3. Finch JT & Klug A (1976) Proc. Natl. Acad. Sci. USA, 73: 1897

    Google Scholar 

  4. Nicolini C & Kendall F Physiol. Chem. Phys. (1977) 9,265: 13

    Google Scholar 

  5. Butler PJG (1984) EMBO [Eur. Mol. Biol. Org.] J. 3: 2599

    Google Scholar 

  6. Nothbohm H (1979) Int. J. Biol. Macromol. 1: 180

    Google Scholar 

  7. Mc Ghee JD, Nickol JM, Felsenfeld G & Rao DC (1983) Cell 33: 831

    Google Scholar 

  8. Widom J & Klug A (1985) Cell 43: 207

    Google Scholar 

  9. Widom J (1986) J. Mol. Biol 190: 411

    Google Scholar 

  10. Nicolini C, Trfiletti V, Cavazza B, Cuniberti C, Patrone E, Carlo P & Brambilla G Science 219 (1983) 176

    Google Scholar 

  11. Cavazza B, Trefiletti V, Pioli F, Ricci E & Patrone E (1983) J. Cell Sci. 62: 81

    Google Scholar 

  12. Nicolini C (1991) Molecular basis of human cancer. NATO ASI Series, 209, Plenum Press, New York

    Google Scholar 

  13. Worcel AS, Strogaz S & Riley D (1981) Proc. Nat. Acad. Sci. USA 78: 1461

    Google Scholar 

  14. Woodcock CLF, Frado, L-LY & Rattner J. (1984) Cell. Biol. 99: 42

    Google Scholar 

  15. Staynov DZ (1983) Int. J. Biol. Macromol. 5: 3

    Google Scholar 

  16. Bordas J, Peres-Grau, L, Koch MHJ, Vega MC & Nave C (1986a) Eur Biophys J. 13: 157

    Google Scholar 

  17. Bordas J, Peres-Grau L, Koch MHJ, Vega M & Nave C (1986b) Eur Biophys J. 13: 175

    Google Scholar 

  18. Makarov VS, Dimitrov V, Smirnov V & Pashev I (1985) FEBS Lett. 181: 357

    Google Scholar 

  19. Williams SP, D Athey B, Muglia LJ, Schappe RS, Gough AH & Langmore JP (1986) Biophys. J. 49: 233

    Google Scholar 

  20. Williams SP & Langmore JP (1991) Biophys. J. 59: 606

    Google Scholar 

  21. Noll M, Thomas JO & Kornberg RD (1975) Science 187: 1203

    Google Scholar 

  22. Notbohm M (1986a) Eur. Biophys. J. 13367

  23. Fujiwara S, Inoko Y Ueki T (189) J. Biochem. 106: 119

  24. Nicolini C & Baserga R (1975a) Arch. Biochem. Biophys. Res. Commun. 169: 678

    Google Scholar 

  25. Nicolini C & Baserga R(1975b) Biochem. Biophys. Res. Commun. 64: 189

    Google Scholar 

  26. Vergani L, Gavazzo P, Mascetti G & Nicolini C (1994) Biochemistry 33,21: 6578

    Google Scholar 

  27. Nicolini C, Vergani L, Diaspro A & Di Maria E (1989a) Thermochim. Acta 152: 307

    Google Scholar 

  28. Nicolini C, Vergani L, Diaspro A & Scelza P (1989b) Biochem. Biophys. Res. Commun. 155,3: 1396

    Google Scholar 

  29. Diaspro A, Bertolotto M, Vergani L & Nicolini C (1991) IEEE Trans. Biomed. Eng BME 38: 670

    Google Scholar 

  30. Porod G (1982) in: Small angle X-Ray scattering, Kratky O & Glatter O (eds.) (p. 17) Academic Press, London

    Google Scholar 

  31. Mogilevsky LY, Dembo AT, Svergun DI & Feigin LA (1984) Kristallografia 29: 587 [Russian language]

    Google Scholar 

  32. Aultchenko VM, Baru SE, Sidorov VA, Savinov GA, Feldman IG, Khabakhpashev AG & Yasenev MV (1983) Nucl. Instrum. Methods 208: 443

    Google Scholar 

  33. Sosfenov NI, Feigin LA, Bondarenko KP & Mirensky AV (1969) Appar. Metody Rentgenovskogo Anal. 5: 53 [Russian language]

    Google Scholar 

  34. Kratky O, Piltz I & Schmitz PJ (1966) J. Colloid Interface Sci. 21: 24

    Google Scholar 

  35. Rolbin Yu A, Svergun DI & Schedrin BM (1980) Kristallografia 25: 231 [Engl. transl. (1980) Sov. Phys. Crystallogr. 25: 133]

    Google Scholar 

  36. Schedrin BM & Feigin LA (1966) Kristallografia 11: 159 [Engl. transl. (1966) Sov. Phys. Crystallogr. 11: 166]

    Google Scholar 

  37. Fujiwara S (1992) Biophys. Chem. 43: 81

    Google Scholar 

  38. Debye P (1915) Ann. Phys. 46 809

    Google Scholar 

  39. Vergani L, Mascetti G, Gavazzo P & Nicolini C (1992) Thermochim. Acta 206: 175

    Google Scholar 

  40. Noll M (1976) Nature 8: 349

    Google Scholar 

  41. Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning in: Cold Spring Harbor Laboratory Press Cold Spring Harbor, N.Y.

    Google Scholar 

  42. Koch MHJ, Vega MC, Sayers Z & Michon AM (1987a) Eur. Biophys. J. 14: 307

    Google Scholar 

  43. Koch MHJ, Vega MC, Sayers Z & Michon AM (1987b) Eur. Biophys. J. 15: 133

    Google Scholar 

  44. Greulich KO, Wachtel H, Ausio J, Seger D & Eisemberg HJ. Mol. Biol. 193 (1987) 709

    Google Scholar 

  45. Nicolini C, Baserga R & Kendall F (1976) Science 192: 796

    Google Scholar 

  46. Nicolini C, Cavazza B, Trefiletti V, Pioli F, Beltrame F, Brambilla G, Maraldi N & Patrone E (1983a). J. Cell Sci. 62: 103

    Google Scholar 

  47. Nicolini C, Carlo P, Martelli R, Finollo R, Bignone FA, Patrone E, Trefiletti V & Brambilla G (1982) J. Mol. Biol. 161: 155

    Google Scholar 

  48. Hollandt H, Notbohm H, Riedel F & Harbers E (1979) Nucleic Acid Res. 6(5): 2017

    Google Scholar 

  49. Mitra S, Sen D & Crothers MD (1984) Nature 308: 247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maccioni, E., Vergani, L., Dembo, A. et al. X-ray small angle scattering study of chromatin as a function of fiber length. Mol Biol Rep 25, 73–86 (1998). https://doi.org/10.1023/A:1006838708493

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006838708493

Navigation