Skip to main content
Log in

Continued Fractions and Szegö Polynomials in Frequency Analysis and Related Topics

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper is an expository survey of recent research on the application of Szegö polynomials and PPC-continuedfractions to the frequency analysis problem described as follows: We want to determine the unknown frequencies ω1, ω2, ..., ω I from a sample of N observed values x N (m), m = 0, 1, ..., N− 1, arising from a continuous waveform that is the superposition of a finite number of sinusoidal waves with frequencies ω12, ..., ω I . The method is based on the property that certain zerosof the Szegö polynomials (and poles of the PPC-fraction approximants) converge (as N → ∞) to the frequency points ei ω j , j = ±1, ± 2, ..., ± I. The remaining zeros are bounded away from the unit circle |z|=1, asN → ∞. The Levinson algorithm is used to construct the Szegö polynomials and PPC-fractions from the values x N (m). A discussion is given on connections between the topics: Carathéodory functions,the trigonometric moment problem, Szegö polynomials and PPC-fractions. We also describe applications to Doppler radar, medicine, speech processing, speech therapy, meteorology and ocean tides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, N. I.: The Classical Moment Problem and Some Related Questions in Analysis, Hafner, New York, 1965.

    Google Scholar 

  2. Akhiezer, N. I. and Krein, M.: Uber Fouriersche Reihen beschränkter sumierbarer Funktionen und ein neues Extremumproblem, Comm. Soc. Math. Kharkov 9 (1934), 3–28; 10 (1934), 3–32.

    Google Scholar 

  3. Ammar, G. S. and Gragg, W. B.: Superfast solution of real positive definite Toeplitz systems, SIAM J. Matrix Anal. Appl. 9(1) (1988), 61–76.

    Google Scholar 

  4. Atal, B. S. and Schroeder, M. R.: Predictive coding of speech signals, In: Proc. 1967 Conf. Comm. and Process, pp. 360–361.

  5. Atkinson, F. V.: Discrete and Continuous Boundary Problems, Academic Press, New York, 1964.

    Google Scholar 

  6. Bitmead, R. R. and Anderson, B. D. O.: Asymptotically fast solution of Toeplitz and related systems of linear equations, Linear Algebra Appl. 34 (1980), 103–116.

    Google Scholar 

  7. Brezinski, C.: Padé-Type Approximation and General Orthogonal Polynomials, Birkhäuser, Boston, 1980.

    Google Scholar 

  8. Bultheel, A.: Algorithms to compute the reflection coefficients of digital filters, In: L. Collatz, G. Mienardus and H. Werner (eds), Numerical Methods of Approximation Theory, Vol. 7, Birkhäuser, Basel, 1984, pp. 33–50.

    Google Scholar 

  9. Carathéodory, C.: Ñber den Variabilitätsbereich der Koeffizienten von Potenzreiheh die Gegebene Werte Nicht Annehmen, Math. Ann. 64 (1907), 95–115.

    Google Scholar 

  10. Carathéodory, C.: Ñber den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo 32 (1911), 193–217.

    Google Scholar 

  11. Chihara, T. S.: Introduction to Orthogonal Polynomials, Math. Appl., Gordon, 1978.

  12. Cybenko, G.: The numerical stability of the Levinson-Durbin algorithm for Toeplitz systems of equations, SIAM J. Sci. Statist. Comp. 1(3) (1980), 303–319.

    Google Scholar 

  13. Delsarte, P., Genin, Y., Kamp, Y. and van Dooren, P.: Speech modeling and the trigonometric moment problem, Phillips J. Res. 37 (1982), 277–292.

    Google Scholar 

  14. Delsarte, P. and Genin, Y.: Spectral properties of finite Toeplitz matrices, In: P. A. Fuhrmann (ed.), Math. Theory of Networks and Systems, Proc. MTNS-83, Beer-Sheva, Israel, Lecture Notes in Control and Inform. Sci., Springer, Berlin, 1984, pp. 194–213.

  15. Delsarte, P., Genin, Y. and Kamp, Y.: Pseudo-Carathéodory functions and Hermitian Toeplitz matrices, Phillips J. Res. 41 (1986), 1–54.

    Google Scholar 

  16. Dewilde, P. and Dym, H.: Schur recursion, error formulas, and convergence of rational estimators for stationary stochastic sequences, IEEE Trans. Info. Theory IT-27 (1981), 446–461.

    Google Scholar 

  17. Fischer, E.: Ñber das Carathéodorysche Problem, Potenzreihen mit positiv reellen Teil Getreffend., Rend. Circ. Mat. Palermo 32 (1911), 240–256.

    Google Scholar 

  18. Fournier, J. D.: Complex zeros of random Szegö polynomials, In: N. Papamichael, St. Ruscheweyh and E. B. Saff (eds), Computational Methods and Function Theory 1997, Approximations and Decompositions 11, World Scientific, New Jersey, 1999, pp. 202–224.

  19. Freud, G.: Orthogonal Polynomials, Pergamon Press, New York, 1971.

    Google Scholar 

  20. Geronimus, J.: On the trigonometric moment problem, Ann. of Math. 47(4) (1946), 742–761.

    Google Scholar 

  21. Geronimus, Ya. L.: Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Transl. 104 (1954).

  22. Geronimus, Ya. L.: Orthogonal Polynomials, Consultants Bureau, New York, 1961.

    Google Scholar 

  23. Gohberg, I. (ed.): Schur Methods in Operator Theory and Signal Processing, Birkhäuser, Boston, 1986.

    Google Scholar 

  24. Grenander, O. and Szegö, G.: Toeplitz Forms and their Applications, University of California Press, Berkeley, 1958.

    Google Scholar 

  25. Henrici, P.: Applied and Computational Complex Analysis, Vol. 2, Special Functions, Integral Transforms, Asymptotics and Continued Fractions, Wiley, New York, 1977.

    Google Scholar 

  26. Herglotz, G.: Ñber Potenzreihen mit positivem reellen Teil im Einheitskreis, Ber. Verh. Sächs. Ges. Wiss. Leipzig Math. Phys. Kl. 63 (1911), 501–511.

    Google Scholar 

  27. Hildebrand, F. B.: Introduction to Numerical Analysis,McGraw-Hill, New York, 1956.

    Google Scholar 

  28. Hirschman, I. I., Jr.: Recent developments in the theory of finite Toeplitz operators, In: P. Ney (ed.), Advances in Probability and Related Topics, Vol. 1, Dekker, New York, 1971, pp. 105–167.

    Google Scholar 

  29. Jones, W. B.: Schur's algorithm extended and Schur continued fractions, In: A. Cuyt (ed.), Nonlinear Numerical Methods and Rational Approximation, D. Reidel, Dordrecht, 1988, pp. 281–298.

    Google Scholar 

  30. Jones, W. B. and Njåstad, O.: Applications of Szegö polynomials to digital signal processing, Rocky Mountain J. Math. 21(1) (1991), 387–436.

    Google Scholar 

  31. Jones, W. B., Njåstad, O. and Saff, E. B.: Szegö polynomials associated withWiener-Levinson filters, J. Comp. Appl. Math. 32 (1990), 387–407.

    Google Scholar 

  32. Jones, W. B., Njåstad, O. and Thron, W. J.: Continued fractions associated with trigonometric and other strong moment problems, Constr. Approx. 2 (1986), 197–211.

    Google Scholar 

  33. Jones, W. B., Njåstad, O. and Thron, W. J.: Schur fractions, Perron-Carathéodory fractions and Szegö polynomials, a survey, In: W. J. Thron (ed.), Analytic Theory of Continued Fractions II, Lecture Notes in Math. 1199, Springer-Verlag, New York, 1986, pp. 127–158.

  34. Jones, W. B., Njåstad, O. and Thron, W. J.: Continued fractions associated withWiener's linear prediction method, In: C. I. Byrnes and A. Lindquest, (eds), Computational and Combinatorial Methods in Systems Theory, Elsevier Science Publishers B.V., North-Holland, 1986, pp. 327–340.

    Google Scholar 

  35. Jones, W. B., Njåstad, O. and Thron, W. J.: Perron-Carathéodory continued fractions, In: J. Gilewicz, M. Pindor and W. Siemaszko (eds), Rational Approximation and its Applications to Mathematics and Physics, Lecture Notes in Math. 1237, Springer-Verlag, New York, 1987, pp. 188–206.

  36. Jones, W. B., Njåstad, O. and Thron, W. J.:Moment theory, orthogonal polynomials, quadrature and continued fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989), 113–152.

    Google Scholar 

  37. Jones, W. B., Njåstad, O., Thron, W. J. and Waadeland, H.: Szegö polynomials applied to frequency analysis, J. Comp. Appl. Math. 46 (1993), 217–228.

    Google Scholar 

  38. Jones, W. B., Njåstad, O. and Waadeland, H.: Asymptotics for Szegö polynomial zeros, Numer. Algorithms 3 (1992), 255–264.

    Google Scholar 

  39. Jones, W. B., Njåstad, O. and Waadeland, J.: An alternative way of using Szegö polynomials in frequency analysis, In: S. C. Cooper and W. J. Thron (eds), Continued Fractions and Orthogonal Functions, Marcel Dekker, Inc., New York, 1994, pp. 141–152.

    Google Scholar 

  40. Jones, W. B., Njåstad, O. and Waadeland, H.: Asymptotics of zeros of orthogonal and paraorthogonal Szegö polynomials in frequency analysis, In: S. C. Cooper and W. J. Thron (eds), Continued Fractions and Orthogonal Functions, Marcel Dekker, Inc., New York, 1994, pp. 153–190.

    Google Scholar 

  41. Jones, W. B., Njåstad, O. and Waadeland, H.: Application of Szegö polynomials to frequency analysis, SIAM J. Math. Anal. 25(2) (1994), 491–512.

    Google Scholar 

  42. Jones, W. B. and Saff, E. B.: Szegö polynomials and frequency analysis, In: G. Anastassiou (ed.), Approximation Theory, Marcel Dekker, Inc., New York, 1992, pp. 341–352.

    Google Scholar 

  43. Jones, W. B. and Thron, W. J.: Continued Fractions: Analytic Theory and Applications, Encyclopedia Math. Appl. 11, Addison-Wesley, Reading, MA, 1980, distributed now by Cambridge University Press, New York.

    Google Scholar 

  44. Jones, W. B. and Thron, W. J.: A constructive proof of convergence of the even approximants of positive PC-fractions, Rocky Mountain J. Math. 19(1) (1989), 199–210.

    Google Scholar 

  45. Khovanskii, A. N.: The Application of Continued Fractions and Their Generalizations to Problems in Approximation Theory (translated by Peter Wynn), P. Noordhoff N.V., Groningen, The Netherlands, 1963.

    Google Scholar 

  46. Kumaresam, R., Scharf, L. L. and Shaw, A. K.: An algorithm for pole-zero modeling and spectral analysis, IEEE Trans. ASSP 23(3) (1986), 637–640.

    Google Scholar 

  47. Landau, H. J. (ed.): Moments in Mathematics, Proc. Sympos. Appl. Math. 37, Amer. Math. Soc., 1987.

  48. Levinson, N.: The Wiener RMS (root mean square) error criterion in filter design and prediction, J. Math. Phys. 25(1947), 261–278.

    Google Scholar 

  49. Li, X.: Asymptotics of columns in the table of orthogonal polynomials with varying measures, Methods Appl. Anal. 2(2) (1995), 222–236.

    Google Scholar 

  50. Lorentzen, L. and Waadeland, H.: Continued Fractions with Applications, Studies in Comput. Math. 3, North-Holland, New York, 1992.

  51. Lubinski, P. S.: Asurvey of general orthogonal polynomials with weight functions on finite and infinite intervals, Acta Appl. Math. 10 (1987), 237–296.

    Google Scholar 

  52. Markel, J D. and Gray, A. N., Jr.: Linear Prediction of Speech, Springer-Verlag, New York, 1976.

    Google Scholar 

  53. Máté, A., Nevai, P. and Totik, V.: Asymptotics for the ratio of leading coefficients of orthogonal poynomials on the unit circle, Constr. Approx. 1 (1985), 63–69.

    Google Scholar 

  54. Máté, A., Nevai, P. and Totik, V.: Extensions of Szegö's theory of orthogonal polynomials, II, III, Constr. Approx. 3 (1987), 51–72; 73–96.

    Google Scholar 

  55. Mhaskar, H. N. and Saff, E. B.: On the distribution of zeros of polynomials orthogonal on the unit circle, J. Approx. Theory 63(1) (1990), 30–38.

    Google Scholar 

  56. Nevai, P. (ed.): Orthogonal Polynomials: Theory and Practice, Kluwer Acad. Publ., Dordrecht, 1989.

    Google Scholar 

  57. Njåstad, O. and Waadeland, H.:Asymptotic properties of zeros of orthogonal rational functions, J. Comp. Appl. Math. 77 (1997), 255–275.

    Google Scholar 

  58. Njåstad, O. and Waadeland, H.: Generalized Szegö's theory in frequency analysis, J. Math. Anal. Appl. 206 (1997), 280–307.

    Google Scholar 

  59. Pan, K.: Asymptotics for Szegö polynomials associated withWiener-Levinson filters, J. Comp. Appl. Math. 46 (1993), 387–394.

    Google Scholar 

  60. Pan, K. and Saff, E. B.: Asymptotics for zeros of Szegö polynomials associated with trigonometric polynomial signals, J. Approx. Theory 7 (1992), 239–251.

    Google Scholar 

  61. Paul, A. K.: Anharmonic frequency analysis, Math. Comp. 26(118) (1972), 437–447.

    Google Scholar 

  62. Paul, A. K.: Anharmonic frequency analysis: The complement of Fourier analysis, Ann. Télécommunications 35(3–4) (1979), 154–157.

    Google Scholar 

  63. Perron, O.:Die Lehre von den Kettenbrüchen, Band II, Teubner, Stuttgart, 1957.

  64. Petersen, V.: A theorem on Toeplitz determinants containing Tchebycheff polynomials of the first kind, The Royal Norwegian Society of Sciences and Letters, Transactions 4 (1996).

  65. Petersen, V.: Szegö polynomials in frequency analysis: Observations on speed of convergence, Comm. Anal. Theory Cont. Fractions V (1996), 27–33.

    Google Scholar 

  66. Petersen, V.:A combination of two methods in frequency analysis: The R.N/-process, In: W. B. Jones and A. Sri Ranga (eds), Orthogonal Functions, Moment Theory, and Continued Fractions: Theory and Applications, Lecture Notes in Pure and Appl. Math. 199, Marcel Dekker, New York, 1998, pp. 387–398.

    Google Scholar 

  67. Petersen, V.: Zeros of Szegö polynomials used in frequency analysis, In: W. B. Jones and A. Sri Ranga (eds), Orthogonal Functions, Moment Theory, and Continued Fractions: Theory and Applications, Lecture Notes in Pure and Appl. Math. 199, 1998, pp. 399–408.

  68. Petersen, V.: On measures in frequency analysis, J. Comp. Appl. Math. 105 (1999).

  69. Petersen, V.:Weak convergence and boundedness properties of measures in frequency analysis, submitted.

  70. Rabiner, L. R. and Schafer, R. W.: Digital Processing of Speech Signals, Prentice-Hall, Englewood Cliffs, NJ, 1978.

    Google Scholar 

  71. Riesz, F.: Sur certains systèmes singuliers d'équations integrales, Ann. École Norm. Sup. (1911), 33–62.

  72. Riesz, M.: Sur les problème des moments, Troisième Note, Arkiv för Mat. Astronomi och Fysik 17(16) (1923).

  73. Saito, S. and Itakura, F.: The theoretical consideration of statistically optimum methods for speech spectral density, Report No. 3107, Electrical Communications Laboratory, N.T.T. Tokyo, 1966 (in Japanese).

    Google Scholar 

  74. Schur, I.: Ñber Potenzreihen, die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math. 147 (1917) and 148 (1918).

  75. Szegö, G.: Orthogonal Polynomials, Amer. Math. Soc. Coll. Pub. XIII, New York, 1959.

    Google Scholar 

  76. Szegö, G.: Collected Papers, R. Askey (ed.), Vol 1, Birkhäuser, Basel, 1982.

    Google Scholar 

  77. Toeplitz, O.: Ñber die Fouriersche Entwicklung positiver Funktionen, Rend. Circ.Mat. Palermo 32 (1911), 191–192.

    Google Scholar 

  78. Van Assche, W.: Asymptotics for Orthogonal Polynomials, Lecture Notes in Math. 1264, Springer-Verlag, New York, 1987.

  79. Wall, H. S.: Analytic Theory of Continued Fractions, D. Van Nostrand, New York, 1948.

    Google Scholar 

  80. Wiener, N.: Extrapolation, Interpolation and Smoothing of Stationary Time Series, published jointly by The Technology Press of the Massachusetts Institute of Technology and Wiley, Inc., New York, 1949.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, W.B., Petersen, V. Continued Fractions and Szegö Polynomials in Frequency Analysis and Related Topics. Acta Applicandae Mathematicae 61, 149–174 (2000). https://doi.org/10.1023/A:1006454131615

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006454131615

Navigation