Skip to main content
Log in

S(IV) Autoxidation in Atmospheric Liquid Water: The Role of Fe(II) and the Effect of Oxalate

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The reactivity of dissolved iron compounds towards different pollutants and photooxidants in atmospheric liquid water depends upon the oxidation state and speciation of iron. Our measurements of the oxidation state of dissolved iron eluted from aerosol particles (Dae: 0.4–1.6 μm) collected in the urban atmosphere of Ljubljana showed that a large fraction of the iron content is present as Fe(II). The concentration ratio [Fe(II)]/[Fe(III)] varied between 0.9 and 3.1. The kinetics of S(IV) autoxidation catalyzed by Fe(II) under the conditions representative for acidified atmospheric liquid water and the influence of oxalate on this reaction under dark conditions was investigated. The reaction rate is the same if Fe(II) or Fe(III) is used as a catalyst under the condition that Fe(II) can be oxidized in Fe(III), which is the catalytically active species. Oxalate has a strong inhibiting effect on the S(IV) autoxidation in the presence of Fe(II). The reaction is autocatalytic with an induction period, that increases with higher concentrations of oxalate. The inhibiting effect of oxalate differs according to whether iron is initially in the Fe(II) or Fe(III) state. However, in both cases the inhibition by oxalate is a result of the formation of complexes with the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • van Eldik, R., Coichev, N., Bal Reddy, K., and Gerhard, A., 1992: Metal ion catalyzed autoxidation of sulfur(IV)-oxides: Redox cycling of metal ions induced by sulfite, Ber. Bunseges. Phys. Chem. 96, 478–481.

    Google Scholar 

  • Bal Reddy, K. and van Eldik, R., 1992: Kinetics mechanism of the sulfite-induced autoxidation of Fe(II) in acidic aqueous solution, Atmos. Environ. 26A(4), 661–665.

    Google Scholar 

  • Behra, P. and Sigg, L., 1990: Evidence for redox cycling of iron in atmospheric water droplets, Nature 344(6265), 419–421.

    Google Scholar 

  • Brandt, Ch., and van Eldik, R., 1995: Transition metal-catalyzed oxidation of sulfur(IV)-oxides. Atmospheric-relevant processes and mechanisms, Chem. Rev. 95, 119–190.

    Google Scholar 

  • Coichev, N. and van Eldik, R., 1994: Metal catalyzed atmospheric oxidation reactions. A challenge to coordination chemists, New J. Chem. 18, 123–131.

    Google Scholar 

  • Dedik, A. N., Hoffmann, P., and Ensling, J., 1992: Chemical characterization of iron in atmospheric aerosols, Atmos. Environ. 26A(14), 2545–2548.

    Google Scholar 

  • Erel, Y., Pehkonen, S. O., and Hoffmann, M. R., 1993: Redox chemistry of iron in fog and stratus clouds, J. Geophys. Res. 98(D10), 18,423–18,434.

    Google Scholar 

  • Faust, B. C. and Zepp, R. G., 1993: Photochemistry of aqueous iron(III)-polycarboxylate complexes: Roles in the chemistry of atmospheric and surface waters, Environ. Sci. Technol. 27, 2517–2522.

    Google Scholar 

  • Flynn, C. M., 1984: Hydrolysis of inorganic iron(III) salts, Chem. Rev. 84, 31–41.

    Google Scholar 

  • Grgić, I., Hudnik, V., Bizjak M., and Levec, J., 1991: Aqueous S(IV) oxidation-I. Catalytic effects of some metal ions, Atmos. Environ., 25A(8), 1591–1597.

    Google Scholar 

  • Grgić, I., Dovzan, A., Berčič, G., and Hudnik, V., 1998: The effect of atmospheric organic compounds on the Fe-catalyzed S(IV) autoxidation in aqueous solution, J. Atmos. Chem. 29, 315–337.

    Google Scholar 

  • Hoffmann, P., Dedik, A. N., Ensling, J., Weinbruch, S., Weber, S., Sinner, T., Gütlich, P., and Ortner, M. H., 1996: Speciation of iron in atmospheric aerosol samples, J. Aerosol Sci. 27(2), 325–337.

    Google Scholar 

  • Huss, A., Lim, P. K., and Eckert, C. A., 1982: Oxidation of aqueous sulfur dioxide. 1. Homogeneous manganese(II) and iron(II) catalysis at low pH, J. Phys. Chem. 86, 4224–4228.

    Google Scholar 

  • Joos, F. and Baltensperger, U., 1991: A field study on chemistry, S(IV) oxidation rates and vertical transport during fog conditions, Atmos. Environ. 25A, 217–230.

    Google Scholar 

  • Kawamura, K., Steinberg, S., and Kaplan, I. R., 1996: Concentrations on monocarboxylic and dicarboxylic acids and aldehydes in southern California wet precipitations: Comparison of urban and nonurban samples and compositional changes during scavenging, Atmos. Environ. 30(7), 1035–1052.

    Google Scholar 

  • Kotronarou, A. and Sigg, L., 1993: SO2 oxidation in atmospheric water: Role of Fe(II) and effect of ligands, Eviron. Sci. Technol., 27(13), 2725–2735.

    Google Scholar 

  • Lim, P. K., Huss, A., and Eckert, C. A., 1982: Oxidation of aqueous sulfur dioxide. 3. The effect of chelating agents and phenolic antioxidants, J. Phys. Chem. 86, 4233–4237.

    Google Scholar 

  • Novič, M., Grgić, I., Poje, M., and Hudnik V., 1996: Iron catalyzed oxidation of S(IV) species by oxygen in aqueous solution: Influence of pH on the redox cycling, Atmos. Environ. 30(24), 4191–4196.

    Google Scholar 

  • Pasiuk-Bronikowska, W., Ziajka, J., and Bronikowski, T., 1992: Autoxidation of sulphur compounds, PWN Polish Scientific Publ., Warszawa.

    Google Scholar 

  • Pehkonen, S. O., Erel, Y., and Hoffmann, M. R., 1992: Simultaneous spectrophotometric measurement of Fe(II) and Fe(III) in atmospheric water, Eviron. Sci. Technol. 26, 1731–1736.

    Google Scholar 

  • Pehkonen, S. O., Siefert, R., Erel, Y., Webb, S., and Hoffmann, M. R., 1993: Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds, Eviron. Sci. Technol. 27, 2056–2062.

    Google Scholar 

  • Schroeder, W. H., Dobson, M., Kane, D.M., and Johnson, N. D., 1987: Toxic trace elements associated with airborne particulate matter: A review, J. Air Pollut. Control Assoc. 37, 1267–1285.

    Google Scholar 

  • Sedlak, D. L. and Hoigné, J., 1993: The role of copper and oxalate in the redox cycling of iron in atmospheric waters, Atmos. Environ. 27A(14), 2173–2185.

    Google Scholar 

  • Sedlak, D. L., Hoigné, J., David, M. M., Colvile, R. N., Seyffer, E., Acker, K., Wiepercht, W., Lind, J. A., and Fuzzi, S., 1997: The cloudwater chemistry of iron and copper at Great Dun Fell, U.K., Atmos. Environ. 31(16), 2515–2526.

    Google Scholar 

  • Sempéré, R. and Kawamura, K., 1996: Low molecular weight dicarboxylic acids and related compounds in the remote marine rain samples collected from Western Pacific, Atmos. Environ. 30(11/12), 1609–1619.

    Google Scholar 

  • Siefert, R. L., Pehkonen, S. O., Erel, Y., and Hoffmann, M. R., 1994: Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids, Geochim. Cosmochim. Acta. 58(15), 3271–3279.

    Google Scholar 

  • Sinner, T., Hoffmann, P., and Ortner, H. M., 1994: Determination of pH-value, redox-potential, transition metals concentrations and Fe(II)-and Fe(III)-content in cloud water samples, Beitr. Phys. Atmosph. 67(4), 353–357.

    Google Scholar 

  • Warneck, P. and Ziajka, J., 1995: Reaction mechanism of the iron(III)-catalyzed autoxidation of bisulfite in aqueous solution: Steady state description for benzene as radical scavenger, Ber. Bunsenges. Phys. Chem. 99(1), 59–65.

    Google Scholar 

  • Warneck, P., Mirabel, P., Salmon, G. A., van Eldik, R., Vinckier, C., Wannowius, K. J., and Zetzsch, C., 1996: Review of the activities and achievements of the EUROTRAC subproject HALIPP, Transition metal ions and their role in atmospheric waters, in P. Warneck (ed.), Heterogeneous and Liquid Phase Processes, Laboratory studies related to aerosols and clouds, Springer-Verlag, Berlin, pp. 20–26.

    Google Scholar 

  • Zhu, X., Prospero, J. M., Savoie, D. L., Millero, F.J., Zika, R. G., and Saltzman, E. S., 1993: Photoreduction of iron(III) in marine mineral aerosol solutions, J. Geophys. Res. 98(D5), 9039–9046.

    Google Scholar 

  • Zuo, Y. and Hoigné, J., 1992: Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes, Environ. Sci. Technol. 26(5), 1014–1022.

    Google Scholar 

  • Zuo, Y. and Hoigné, J., 1993: Evidence for photochemical formation of H2O2 and oxidation of SO2 in authentic fog water, Science 260, 71–73.

    Google Scholar 

  • Zuo, Y. and Hoigné, J., 1994: Photochemical decomposition of oxalic, glyoxalic and pyruvic acid catalysed by iron in atmospheric waters, Atmos. Environ. 28(7), 1231–1239.

    Google Scholar 

  • Zuo, Y., 1995: Kinetics of photochemical/chemical cycling of iron coupled with organic substances in cloud and fog droplets, Geochim. et Cosmochim. Acta 59(15), 3123–3130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grgićc, I., Pozničc, M. & Bizjak, M. S(IV) Autoxidation in Atmospheric Liquid Water: The Role of Fe(II) and the Effect of Oxalate. Journal of Atmospheric Chemistry 33, 89–102 (1999). https://doi.org/10.1023/A:1006141913681

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006141913681

Navigation