Skip to main content
Log in

The activities of acidic and glutamine-rich transcriptional activation domains in plant cells: design of modular transcription factors for high-level expression

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The aim of this work was to design strong transcriptional activators that can be used to regulate plant gene expression. The contribution of different components in a transcription factor and target gene system was assayed by measuring transcriptional activation. Each component was optimised to achieve maximal reporter gene expression in transient protoplast transformation assays. The DNA-binding domain of the yeast transcriptional activator GAL4 was studied in the context of fusion proteins with activation domains of the herpes simplex virus protein VP16 or the tomato Myb-like activator THM18. Multimerisation of the activation domain and insertion of a homopolymeric glutamine stretch was used to increase transcription factor potency. Evidence is presented that these modifications can result in even more active transcription factors when they are combined. Finally, it was demonstrated using competition experiments that transcription factors with acidic activation domains can mutually suppress their activation potentials when expressed at high levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams E, Neigeborn L, Carlson M: Molecular analysis of SNF2 and SNF5, genes required for expression of glucoserepressible genes in Saccharomyces cerevisiae. Mol Cell Biol 6: 3643–651 (1986).

    PubMed  Google Scholar 

  2. Berger SL, Cress WD, Cress A, Triezenberg SJ, Guarente L: Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors. Cell 61: 1199–1208 (1990).

    PubMed  Google Scholar 

  3. Brent R, Ptashne M: A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43: 729–736 (1985).

    PubMed  Google Scholar 

  4. Carey M, Kakidani H, Leatherwood J, Mostashari F, Ptashne M: An amino-terminal fragment of GAL4 binds DNA as a dimer. J Mol Biol 209: 423–432 (1989).

    PubMed  Google Scholar 

  5. Carey M, Lin Y-S, Green MR, Ptashne M: A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives. Nature 345: 361–364 (1990).

    PubMed  Google Scholar 

  6. Chevray PM, Nathans D: Protein interaction cloning in yeast: Identification ofmammalian proteins that reactwith the leucine zipper of Jun. Proc Natl Acad Sci USA 89: 5789–5793 (1992).

    PubMed  Google Scholar 

  7. Emami KH, Carey M: A synergistic increase in potency of a multimerised VP16 transcriptional activation domain. EMBO J 11: 5005–5012 (1992).

    PubMed  Google Scholar 

  8. Fang RX, Nagy F, Sivasubramaniam S, Chua N-H: Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1: 141–150 (1989).

    Article  PubMed  Google Scholar 

  9. Gerber HP, Seipel K, Georgiev O, Hofferer M, Hug M, Rusconi S, Schaffner W:Transcriptional activationmodulated by homopolymeric glutamine and proline stretches. Science 263: 808–811 (1994).

    PubMed  Google Scholar 

  10. Gill G, Ptashne M: Negative effect of the transcriptional activator GAL4. Nature 334: 721–724 (1988).

    PubMed  Google Scholar 

  11. Giniger E, Varnum SM, Ptashne M: Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40: 767–774 (1985).

    PubMed  Google Scholar 

  12. Goodrich JA, Cutler G, Tjian R: Contacts in context: promoter specificity and macromolecular interactions in transcription. Cell 84: 825–830 (1996).

    Article  PubMed  Google Scholar 

  13. Goodrich JA, Hoey T, Thut CJ, Admon A, Tjian R: Drosophila TAFII40 interacts with both a VP16 domain and the basal transcription factor TFIIB. Cell 75: 519–530 (1993).

    PubMed  Google Scholar 

  14. Guerineau F, Mullineaux P: Plant transformation and expression vectors. In: Croy RDD (ed) PlantMolecular Biology Labfax, pp. 125–127. BIOS Scientific Publishers, London (1993).

    Google Scholar 

  15. Hahn S: Structure and function of acidic transcription activators. Cell 72: 481–483 (1993).

    PubMed  Google Scholar 

  16. Hoey T, Weinzierl ROJ, Gill G, Chen J-L, Dynlacht BD, Tjian R: Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected for coactivators. Cell 72: 247–260 (1993).

    PubMed  Google Scholar 

  17. Jefferson RA: Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405 (1987).

    Google Scholar 

  18. Lin Q, Hamilton WDO, Merryweather A: Cloning and initial characterization of 14 myb-related cDNAs from tomato (Lycopersicon esculentum cv. Ailsa Craig). Plant Mol Biol 30: 1009–1020 (1996).

    PubMed  Google Scholar 

  19. Lin Y-S, Carey M, Ptashne M, Green MR: How different eukaryotic transcriptional activators can cooperate promiscuously. Nature 345: 359–361 (1990).

    Article  PubMed  Google Scholar 

  20. Lin Y-S, Ha I, Maldonado E, Reinberg D, Green MR: Binding of general transcription factor TFIIB to an acidic activating region. Nature 353: 569–571 (1991).

    PubMed  Google Scholar 

  21. Luehrsen KR, de Wet JR, Walbot V: Transient expression analysis in plants using firefly luciferase reporter gene. Meth Enzymol 216: 397–414 (1992).

    PubMed  Google Scholar 

  22. Ma J, Przibilla E, Hu J, Bogorad L, Ptashne M: Yeast activators stimulate plant gene expression. Nature 334: 631–633 (1988).

    PubMed  Google Scholar 

  23. McCarty D, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK: The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66: 895–905 (1991).

    Article  PubMed  Google Scholar 

  24. McKnight SL: Transcription revisited: a commentary on the 1995 Cold Spring Harbor Meeting, ‘Mechanisms ofEukaryotic Transcription’. Genes Devel 10: 367–381 (1996).

    PubMed  Google Scholar 

  25. Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F: Hybrid genes in the analysis of transformation conditions. Plant Mol Biol 8: 363–373 (1987).

    Google Scholar 

  26. Ohashi Y, Brickman JM, Furman E, Middleton B, Carey M: Modulating the potency of an activator in a yeast in vitro transcription system. Mol Cell Biol 14: 2731–2739 (1994).

    PubMed  Google Scholar 

  27. Omirulleh S, Abraham M, Golovkin M, Karabaev MK, Mustardy L, Morocz S, Dudits D: Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplastderived cells and transgenic plants in maize. Plant Mol Biol 21: 415–428 (1993).

    Article  PubMed  Google Scholar 

  28. Ponticelli AS, Pardee TS, Struhl K: The glutamine-rich activation domains of human Sp1 do not stimulate transcription in Saccharomyces cerevisiae. Mol Cell Biol 15: 983–988 (1995).

    PubMed  Google Scholar 

  29. Ranish JA, Hahn S: Transcription: basal factors and activation. Curr Opin Genet Devel 6: 151–158 (1996).

    Google Scholar 

  30. Roberts SGE, Green MR: Transcription: dichotomous regulators. Nature 375: 105–106 (1995).

    PubMed  Google Scholar 

  31. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  32. Sauer F, Wasserman DA, Rubin GM, Tjian R: TAFIIs mediate activation of transcription in the Drosophila embryo. Cell 87: 1271–1284 (1996).

    PubMed  Google Scholar 

  33. Shufflebottom D: Ph.D. thesis, University of Cambridge (1992).

  34. Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH: A set of plant expression vectors for transcriptional and translational fusions. Nucl Acids Res 15: 5890 (1987).

    PubMed  Google Scholar 

  35. Triezenberg SJ, Kingsbury RC, McKnight SL: Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Devel 2: 718–729 (1988).

    PubMed  Google Scholar 

  36. Ueda T, Waverczak W, Ward K, Sher N, Ketudat M, Schmidt RJ, Messing J: Mutations of the 22-kD and 27-kD zein promoters affect transactivation by the Opaque-2 protein. Plant Cell 4: 701–709 (1992).

    Article  PubMed  Google Scholar 

  37. Wilde RJ, Cooke SE, Brammar WJ, Schuch W:Control of gene expression in plant cells using a 434:VP16 chimeric protein. Plant Mol Biol 24: 381–388 (1994).

    PubMed  Google Scholar 

  38. Wolffe AP and Pruss D: Targeting chromatin disruption: transcription regulators that acetylate histones. Cell 6: 817–819 (1994).

    Google Scholar 

  39. Workman JL, Taylor ICA, Kingston RE: Activation domains of stably bound GAL4 derivatives alleviate repression of promoters by nucleosomes. Cell 64: 533–544 (1991).

    PubMed  Google Scholar 

  40. Xiao H, Pearson A, Coulombe B, Truant R, Zhang S, Regier JL, Triezenberg SJ, Reinberg D, Flores O, Ingles CJ, Greenblatt J: Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol Cell Biol 14: 7013–7024 (1994).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwechheimer, C., Smith, C. & Bevan, M.W. The activities of acidic and glutamine-rich transcriptional activation domains in plant cells: design of modular transcription factors for high-level expression. Plant Mol Biol 36, 195–204 (1998). https://doi.org/10.1023/A:1005990321918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005990321918

Navigation