Skip to main content
Log in

Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

One of the most severe diseases of cultivated tomato worldwide is caused by tomato yellow leaf curl virus (TYLCV), a geminivirus transmitted by the whitefly Bemisia tabaci. Here we describe the application of antisense RNAs to interfere with the disease caused by TYLCV. The target of the antisense RNA is the rare messenger RNA of the Rep protein, encoded by the C1 gene. Transgenic Nicotiana benthamiana plants expressing C1 antisense RNA were obtained and shown to resist infection by TYLCV. Some of the resistant lines are symptomless, and the replication of challenge TYLCV almost completely suppressed. The transgenes mediating resistance were shown to be effective through at least two generations of progeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. An G, Watson BD, Stachel S, Gordon MP, Nester EW: New cloning vehicules for transformation of higher plants. EMBO J 4: 277–284 (1985).

    Google Scholar 

  2. Beachy RN, Loesch-Fries S, Tumer NE: Coat protein-mediated resistance against virus infection. Annu Rev Phytopath 28: 451–474 (1990).

    Google Scholar 

  3. Bejarano ER, Lichtenstein CP: Expression of TGMV antisense RNA in transgenic tobacco inhibits replication of BCTV but not ACMV geminiviruses. Plant Mol Biol 24: 241–248 (1994).

    Google Scholar 

  4. Bock KR: Geminivirus diseases in tropical plants. Plant Dis 66: 266–270 (1982).

    Google Scholar 

  5. Brown JK: An update of the whitefly-transmitted geminiviruses in the Americas and the Caribbean Basin. FAO Plant Prot Bull 39: 5–23 (1990).

    Google Scholar 

  6. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299 (1979).

    Google Scholar 

  7. Choi IR, Stenger DC: Strain-specific determinations of beet curly top geminivirus DNA replication. Virology 206: 904–912 (1995).

    Google Scholar 

  8. Cohen S, Harpaz I: Periodic rather than continual acquisition of new tomato virus by its vector, the tobacco whitefly (Bemisia tabaci Gennadius). Entomol Exp Appl 7: 155–166 (1964).

    Google Scholar 

  9. Czosnek H, Navot N, Laterrot H: Geographical distribution of tomato yellow leaf curl virus. A first survey using a specific DNA probe. Phythopath Médit 29: 1–6 (1990).

    Google Scholar 

  10. Day AG, Bejarano ER, Buck KW, Burrell M, Lichtenstein CP: Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci USA 88: 6721–6725 (1991).

    Google Scholar 

  11. de Feyter R, Young M, Schroeder K, Dennis ES, Gerlach W: A ribozyme gene and an antisense gene are effective in conferring resistance to tobacco. Mol Gen Genet 250: 329–338 (1996).

    Google Scholar 

  12. Desbiez C, David C, Mettouchi A, Laufs J, Gronenborn B: Rep protein of tomato yellow leaf curl geminivirus (TYLCV) has an ATPase activity required for viral DNA replication. Proc Natl Acad Sci USA 92: 5640–5644 (1995).

    Google Scholar 

  13. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).

    Google Scholar 

  14. Dry IB, Rigden JE, Krake LR, Mullineaux PM, Rezaian MA: Nucleotide sequence and genome organization of tomato leaf curl geminivirus. J Gen Virol 74: 147–151 (1993).

    Google Scholar 

  15. Elmer JS, Brand L, Sunter G, Gardiner WE, Bisaro DM, Rogers SG: Genetic analysis of the tomato golden mosaic virus II. The product of the AL1 coding sequence is required for replication. Nucl Acids Res 16: 7043–7060 (1988).

    Google Scholar 

  16. Erickson P, Izant JG: Gene Regulation: Biology of Antisense RNA and DNA, Vol. 1. Raven Press Series on Molecular and Cellular Biology, Raven Press, New York (1992).

    Google Scholar 

  17. Finnegan J, McElroy D: Transgene inactivation: plants fight back. Bio/technology 12: 883–888 (1994).

    Google Scholar 

  18. Fontes EBP, Gladfelter HJ, Schaffer RL, Petty ITD, Hanley-Bowdoin L: Geminivirus replication origins have a modular organization. Plant Cell 6: 495–516 (1994).

    Google Scholar 

  19. Fontes EBP, Eagle PA, Sipe PS, Luckow VA, Hanley-Bowdoin L: Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J Biol Chem 269: 8459–8465 (1994).

    Google Scholar 

  20. Haseloff J, Gerlach WL: Simple RNA enzymes with new and highly specific endonuclease activities. Nature 334: 585–591 (1988).

    Google Scholar 

  21. Heyraud-Nitschke F, Schumacher S, Laufs J, Schaefer S, Schell J, Gronenborn B: Determination of the origin cleavage and joining domain of geminivirus. Rep proteins. Nucl Acids Res 23: 910–916 (1995).

    Google Scholar 

  22. Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes in plants. Science 227: 1229–1231 (1985).

    Google Scholar 

  23. Höfgen R, Willmitzer L: Storage of competent cells for Agrobacterium transformation. Nucl Acids Res 16: 9877 (1988).

    Google Scholar 

  24. Jupin I, de Kouchkovsky F, Jouanneau F, Gronenborn B: Movement of tomato yellow leaf curl geminivirus (TYLCV): Involvement of the protein encoded by ORF C4. Virology 204: 82–90 (1994).

    Google Scholar 

  25. Jupin I, Hericourt F, Benz B, Gronenborn B: DNA replication specificity of TYLCV geminivirus is mediated by the amino-terminal 116 amino acids of the Rep protein. FEBS Lett 362: 116–120 (1995).

    Google Scholar 

  26. Kammann M, Laufs J, Schell J, Gronenborn B: Rapid insertional mutagenesis of DNA by polymerase chain reaction (PCR). Nucl Acids Res 17: 5404 (1989).

    Google Scholar 

  27. Kheyr-Pour A, Bendahmane M, Matzeit V, Accotto GP, Crespi S, Gronenborn B: Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucl Acids Res 19: 6763–6769 (1991).

    Google Scholar 

  28. Kunik T, Salomon R, Zamir D, Navot N, Zeidan M, Michelson I, Gafni Y, Czosnek H: Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Bio/technology 12: 500–505 (1994).

    Google Scholar 

  29. Laufs J, Traut W, Heyraud F, Matzeit V, Rogers SG, Schell J, Gronenborn B: In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc Natl Acad Sci USA 92: 3879–3883 (1995).

    Google Scholar 

  30. Lazarowitz SG: Geminiviruses: genome structure and gene function. Crit Rev Plant Sci 11: 327–349 (1992).

    Google Scholar 

  31. Lehrach H, Diamond D, Wozney JM, Boedtker H: RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16: 4743–4751 (1977).

    Google Scholar 

  32. Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H: Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185: 151–161 (1991).

    Google Scholar 

  33. Nelson RS, Powell-Abel P, Beachy RN: Lesions and virus accumulation in inoculated transgenic tobacco plants expressing the coat protein gene of tobacco mosaic virus. Virology 158: 126–132 (1987).

    Google Scholar 

  34. Rochester DE, DePaulo JJ, Fauquet CM, Beachy RN: Complete nucleotide sequence of the geminivirus tomato yellow leaf curl virus, Thailand isolate. J Gen Virol 75: 477–485 (1994).

    Google Scholar 

  35. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  36. Stanley J, Frischmuth T, Ellwood S: Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants. Proc Natl Acad Sci USA 87: 6291–6295 (1990).

    Google Scholar 

  37. von Arnim A, Stanley J: Inhibition of African cassava mosaic virus systemic infection by a movement protein from the related geminivirus tomato golden mosaic virus. Virology 187: 555–564 (1992).

    Google Scholar 

  38. Zakay Y, Navot N, Zeidan M, Kedar N, Rabinowitch H, Czosnek H, Zamir D: Screening of Lycopersicon accessions for resistance to tomato leaf curl virus: presence of viral DNA and symptom development. Plant Dis 75: 279–281 (1990).

    Google Scholar 

  39. Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, Van-Oss H, Kedar N, Rabinowitch HD, Czosnek H: Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, TY-1. Theor Appl Genet 88: 141–146 (1994).

    Google Scholar 

  40. Zucker M, Stiegler P: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl Acids Res 9: 133–148 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendahmane, M., Gronenborn, B. Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA. Plant Mol Biol 33, 351–357 (1997). https://doi.org/10.1023/A:1005715805000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005715805000

Navigation