Skip to main content
Log in

How Accurately Can We Determine the Coronal Heating Mechanism in the Large-Scale Solar Corona?

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In recent papers by Priest et al., the nature of the coronal heating mechanism in the large-scale solar corona was considered. The authors compared observations of the temperature profile along large coronal loops with simple theoretical models and found that uniform heating along the loop gave the best fit to the observed data. This then led them to speculate that turbulent reconnection is a likely method to heat the large-scale solar corona. Here we reconsider their data and their suggestion about the nature of the coronal heating mechanism. Two distinct models are compared with the observations of temperature profiles. This is done to determine the most likely form of heating under different theoretical constraints. From this, more accurate judgments on the nature of the coronal heating mechanism are made. It is found that, due to the size of the error estimates in the observed temperatures, it is extremely difficult to distinguish between some of the different heat forms. In the initial comparison the limited range of observed temperatures (T>1.5 MK) in the data sets suggests that heat deposited in the upper portions of the loop, fits the data more accurately than heat deposited in the lower portions. However if a fuller model temperature range (T<1.0 MK) is used results in contridiction to this are found. In light of this several improvements are required from the observations in order to produce theoretically meaningful results. This gives serious bounds on the accuracy of the observations of the large-scale solar corona in future satellite missions such a Solar-B or Stereo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acton, L. W.: 1996, ASP Conf. Ser. 109, 45.

    Google Scholar 

  • Bevington, P. R. and Robinson, D. K.: 1994, McGraw-Hill, New York.

  • Culhane, J. L.: 1997, Adv. Space Res. 19, 1839.

    Google Scholar 

  • Erdelyi, R.: 1998, Solar Phys. 180, 213.

    Google Scholar 

  • Galsgaard, K. and Nordlund, Å.: 1996, J. Geophys. Res. 101, 13445.

    Google Scholar 

  • Galsgaard, K., Mackay, D. H., Priest, E. R. and Nordlund, Å.: 1999, Solar Phys. 189, 95.

    Google Scholar 

  • Golub, L., Krieger, A., Silk, J., Timothy, A. and Vaiana, G.: 1974, Astrophys J. 189, L93.

    Google Scholar 

  • Golub, L., Krieger, A., Harvey, J. and Vaiana, G.: 1977, Solar Phys. 53, 111.

    Google Scholar 

  • Hara, L., Tsuneta, S., Saku, Acton, L. W., Bruner, M., Lemen, J. R., and Ogawara, Y.: 1994, Publ. Astron. Soc. Japan 46, 493.

    Google Scholar 

  • Hildner, E.: 1972, Solar Phys. 35, 123.

    Google Scholar 

  • Hood, A. W. and Anzer, U.: 1988, Solar Phys. 115, 61.

    Google Scholar 

  • Hood, A. W. and Priest, E. R.: 1979, Astron. Astrophys. 77, 233.

    Google Scholar 

  • Hood, A. W., Ireland, J. and Priest, E. R.: 1997, Astron. Astrophys. 318, 957.

    Google Scholar 

  • Jordan, C.: 1992, Journal of the Italian Astronomical Society V63.

  • Kano, R.: 1997, Proceedings of the Fifth SOHO Workshop, ESA SP-404, p. 445.

  • Klimchuk, J. A., Lemen, J. R., Feldman, U., Tsuneta, S. and Uchida, Y.: 1992, Publ. Astron. Soc. Japan 44, L181.

    Google Scholar 

  • Kmietowicz, Z.W. and Yannoulis, Y.: 1976, Statistical Table Longman Science and Technical, p. 33.

  • Lenz, D. D., DeLuca, E. E, Golub, L., Rosner, R. and Bookbinder, J. A.: 1999, Astrophys. J. Letters, accepted.

  • Priest, E. R., Foley, C. R., Heyvaerts, J., Arber, T. D., Culhane, J. L., and Acton, L.W.: 1998, Nature 393, 545.

    Google Scholar 

  • Priest, E. R., Foley, C. R., Heyvaerts, J., Arber, T. D., Culhane, J. L., Acton, L. W., and Mackay, D. H.: 1999, Astrophys. J., submitted.

  • Roberts, B. and Frankenthal, S: 1980, Solar Phys. 68, 103.

    Google Scholar 

  • Rosner, R., Tucker, W. H., and Vaiana, G. S.: 1978, Astrophys. J. 220, 643.

    Google Scholar 

  • Schrijver, C. J., Title, A. M., Harvey, K. L., Sheeley, N. R., Wang, Y. M., van den Oord, G. H. J., Shine, R. A., Tarbell, T. D., and Hurlburt, N. E.: 1998, Nature 394, 152.

    Google Scholar 

  • Sturrock, P. A., Wheatland, M. S., and Acton, L. W.: 1996, Astrophys. J. 461, L115.

    Google Scholar 

  • Tsuneta, S.: 1996, Solar and Astrophysical MHD Flows, Kluwer Academic, Publishers, Dordrecht, p. 85.

    Google Scholar 

  • Uchida, Y.: 1993, Physics of the Solar and Stellar Coronae, Kluwer Academic Publishers, Dordrecht, p. 97.

    Google Scholar 

  • Ulmschneider, P., Priest, E. R., and Rosner, R.: 1991, Mechanisms of Chromospheric and Coronal Heating, Springer, Berlin.

    Google Scholar 

  • Walsh, R. W., Bell, G. E., and Hood, A. W.: 1995, Solar Phys. 161, 83.

    Google Scholar 

  • Yoshida, T., and Tsuneta, S.: 1996, Astrophys. J. 459, 342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackay, D., Galsgaard, K., Priest, E. et al. How Accurately Can We Determine the Coronal Heating Mechanism in the Large-Scale Solar Corona?. Solar Physics 193, 93–116 (2000). https://doi.org/10.1023/A:1005222810746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005222810746

Keywords

Navigation