Skip to main content
Log in

Modelling of magnetic interactions in partially-ionized gas: application to the FIP effect

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We have adapted the ZEUS code to model magnetic interactions in partially ionized gas. When two regions of opposite polarity come into contact with each other, ions drifting in response to the Lorentz force fall into the minimum of the magnetic field, and then the drifting ions force the neutrals to take part in the flow. Because of the finite time required for ion-atom collisions to occur, the gas which emerges from the interaction site has an ion/atom ratio which may be altered relative to that in the ambient medium. In order to model this effect, we adapt the Zeus code to a two-step iterative process involving a cycle between the hydrodynamic (HD) and the magnetohydrodynamic (MHD) versions of the code. The ion and atom fluids are coupled by collisions. Our simulations show that in chromospheric conditions, outflowing gas exhibits enhancements in ion/atom ratios which may be as large as a factor of 10 or more. The magnitude of the enhancements is determined by two key ratios which enter into the problem: the degree of ionization (ni/na), and the plasma β parameter. We show that, in the context of the mechanism we propose here, the amplitude of the ion/atom enhancements in the solar chromosphere is subject to a remarkable self-regulation because the ion density ni is almost invariant over the height range of interest to us. Our results are relevant in the context of the Sun, where the coronal abundances of elements with low first ionization potential (FIP) are systematically enhanced in certain magnetic structures. Although data for stars other than the Sun are sparse, we point out that our results are also useful for interpreting the available stellar data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arge, C. N.: 1997, ‘Effects of Astrophysical Magnetic Fields in Partially Ionized Gases’, Ph. D. dissertation, University of Delaware, p. 35.

  • Athay, R. G.: 1981, in S. Jordan (ed.), The Sun as a Star, NASA SP-450, Washington DC, p. 114.

  • Brandenburg, A. and Zweibel, E. G.: 1994, Astrophys. J. 427, L91 (BZ).

    Google Scholar 

  • Brandenburg, A. and Zweibel, E. G.: 1995, Astrophys. J. 448, 734 (BZ).

    Google Scholar 

  • Brown, S. C.: 1959, Basic Data of Plasma Physics, J. Wiley, New York, p. 36.

    Google Scholar 

  • Burgers, J. M.: 1969, Flow Equations for Composite Gases, Academic Press, New York, p. 234.

    Google Scholar 

  • Clarke, D. A., Norman, M. L., and Fiedler, A. F.: 1994, Zeus-3D User Manual Version 3.2.1, Lab. for Comp. Astro., NCSA, University of Illinois.

  • Day, C.: 1998, Physics Today, March issue, p. 19.

  • Draine, B. T. and McKee, C. F.: 1993, Ann. Rev. Astron. Astrophys. 31, 394.

    Google Scholar 

  • Drake, J. J., Laming, J. P., and Widing, K. G.: 1995, Astrophys. J. 443, 393.

    Google Scholar 

  • Drake, J. J., Laming, J. P., and Widing, K. G.: 1996, in S. Bowyer and R. F. Malina (eds.), Astrophysics in the Extreme Ultraviolet, Kluwer Academic, Dordrecht, Holland, p. 97.

    Google Scholar 

  • Feldman, U.: 1992, Phys. Scripta 46, 202.

    Google Scholar 

  • Feldman, U.: 1993, Astrophys. J. 411, 896.

    Google Scholar 

  • Feldman, U.: 1998, Space Sci. Rev., in press.

  • Foukal, P. V.: 1990, Solar Astrophysics, Wiley and Sons, New York.

    Google Scholar 

  • Hasted, J. B.: 1964, Physics of Atom Collisions, Butterworth, Washington DC.

    Google Scholar 

  • Lang, K. R.: 1983, in P. B. Byrne and M. Rodono (eds.), Activity in Red Dwarf Stars, D. Reidel Publ. Co., Dordrecht, Holland, p. 331.

    Google Scholar 

  • Levine, R. H.: 1974, Astrophys. J. 190, 447.

    Google Scholar 

  • Livi, S. H. B., Wang, J., and Martin, S. F.: 1985, Austral. J. Phys. 38, 855.

    Google Scholar 

  • MacLow, M. et al.: 1995, Astrophys. J. 442, 726.

    Google Scholar 

  • Marsch, E., von Steiger, R., and Bochsler, P.: 1995, Astron. Astrophys. 301, 261.

    Google Scholar 

  • Meyer, J. P.: 1985a, Astrophys. J. Suppl. 57, 151.

    Google Scholar 

  • Meyer, J. P.: 1985b, Astrophys. J. Suppl. 57, 173.

    Google Scholar 

  • Meyer, J. P.: 1991, Adv. Space Res. 11(1), 269.

    Google Scholar 

  • Meyer, J. P.: 1993, Adv. Space Res. 13(9), 377.

    Google Scholar 

  • Mott, N. F. and Massey, H. S. W.: 1965, The Theory of Atomic Collisions, Oxford, Clarendon Press, p. 643.

    Google Scholar 

  • Mouschovias, T. C.: 1991, Astrophys. J. 373, 169.

    Google Scholar 

  • Mullan, D. J.: 1971, Monthly Notices Royal Astron. Soc. 153, 145.

    Google Scholar 

  • Mullan, D. J.: 1990, Astron. Astrophys. 232, 520.

    Google Scholar 

  • Mullan, D. J. and Arge, C. N.: 1996, J. Geophys. Res. 101, 2535.

    Google Scholar 

  • Mullan, D. J. and Cheng, Q. Q.: 1994, Astrophys. J. 435, 435.

    Google Scholar 

  • Nakagawa, Y. et al.: 1987, Astron. Astrophys. 179, 354.

    Google Scholar 

  • Parker, E. N.: 1963, Astrophys. J. Suppl. 8, 177.

    Google Scholar 

  • Parker, E. N.: 1974, Bull. Amer. Astron. Soc. 6, 18.

    Google Scholar 

  • Parker, E. N.: 1988, Astrophys. J. 330, 474.

    Google Scholar 

  • Pauls, H. L., Zank, G. P., and Williams, L. L.: 1995, J. Geophys. Res. 100, 21595.

    Google Scholar 

  • Petschek, H. E.: 1964, in W. N. Hess (ed.), The Physics of Solar Flares, NASA SP-50, Washington DC, p. 429.

  • Priest, E. R. 1982, Solar Magnetohydrodynamics, D. Reidel Publ. Co., Dordrecht, Holland, p 345.

    Google Scholar 

  • Schrijver, C. J. et al.: 1997, Astrophys. J. 487, 424.

    Google Scholar 

  • Sheeley, N. R.: 1995, Astrophys. J. 440, 884.

    Google Scholar 

  • Sheeley, N. R.: 1996, Astrophys. J. 469, 423.

    Google Scholar 

  • Stenflo, J. O.: 1973, Solar Phys. 32, 41.

    Google Scholar 

  • Stone, J. M. and Norman, M. L.: 1992a, Astrophys. J. Suppl. 80, 753.

    Google Scholar 

  • Stone, J. M. and Norman, M. L.: 1992b, Astrophys. J. Suppl. 80, 791.

    Google Scholar 

  • Sun, A. et al.: 1995, J. Comp. Phys. 116, 330.

    Google Scholar 

  • Suzuki, M. and Sakai, J.-I.: 1996, Astrophys. J. 465, 393.

    Google Scholar 

  • Vernazza, J. E. et al.: 1981, Astrophys. J. Suppl. 45, 635 (VAL).

    Google Scholar 

  • Widing, K. G.: 1997, Astrophys. J. 480, 400.

    Google Scholar 

  • Widing, K. G. and Feldman, U.: 1992, Astrophys. J. 392, 715.

    Google Scholar 

  • Zirker, J. B.: 1981, in S. Jordan (ed.), The Sun as a Star, NASA SP-450, p. 141.

  • Zweibel, E. G. and Brandenburg, A.: 1997, Astrophys. J. 478, 563 (ZB).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arge, C., Mullan, D. Modelling of magnetic interactions in partially-ionized gas: application to the FIP effect. Solar Physics 182, 293–332 (1998). https://doi.org/10.1023/A:1005096325238

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005096325238

Keywords

Navigation