Skip to main content
Log in

A model for intergranular segregation/dilution induced by applied stress

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A model for the effects of low applied stress on grain boundary segregation/dilution of solute has been suggested in the present paper. This model is based on the following assumptions: (1) The grain boundary is a weaker region on strength than the perfect crystalline in the interior of gain and will preferentially be deformed when a polycrystalline is exerted by an low applied stress. (2) Grain boundaries will work as sources of vacancies to emit vacancies when a compression stress is exerted on them and as sinks to absorb vacancies when a tension stress is exerted; (3) Oversaturated vacancies induced by the applied stress will be combined with the solute atoms to form vacancy-solute atom complexes, the diffusion rate of which is far greater than that of solute atoms in matrix; (4) The effects of applied stress on grain boundary segregation/dilution of solute will be controlled by the balance between the complex diffusion and the reverse solute atom diffusion. According to this model, there will be a critical time during stress aging, at which a maximum level of grain-boundary segregation/dilution will occur. This model can be corroborated by Shinoda and Nakamura's observation for phosphorus and Misra's observation for sulfur in steels. It can be expected that a new basis for understanding the low ductility intergranular fracture induced by applied stress will result from this new model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. SHINODA and T. NAKAMURA, Acta metall. 29 (1981) 1631.

    Google Scholar 

  2. Idem., ibid. 29 (1981) 1637.

    Google Scholar 

  3. J. SHIN and C. J. McMAHON, ibid. 32 (1984) 1535.

    Google Scholar 

  4. Idem., Met. Sci. 18 (1984) 403.

    Google Scholar 

  5. C. A. HIPPSLEY, J. F. KNOTT and B. C. EDWARDS, Acta Metall. 28 (1980) 869.

    Google Scholar 

  6. J. F. KNOTT and B. C. EDWARDS Idem., ibid. 30 (1982) 641.

    Google Scholar 

  7. J. F. KNOTT and B. C. EDWARDS Idem., ibid. 32 (1984) 1381.

    Google Scholar 

  8. P. BOWEN, C. A. HIPPSLEY and J. F. KNOTT, ibid. 32 (1984) 637.

    Google Scholar 

  9. J. J. LEWANDOWSKI, C. A. HIPPSLEY, M. B. D. ELLIS and J. F. KNOTT, ibid. 35 (1987) 593.

    Google Scholar 

  10. J. J. LEWANDOWSKI, C. A. HIPPSLEY and J. F. KNOTT, ibid. 35 (1987) 2081.

    Google Scholar 

  11. C. A. HIPPSLEY, ibid. 35 (1987) 2399.

    Google Scholar 

  12. C. A. HIPPSLEY, D. BUTTLE and C. B. SCRUBY, ibid. 36 (1987) 441.

    Google Scholar 

  13. R. D. K. MISRA, Acta Mater. 44 (1996) 885.

    Google Scholar 

  14. J.-R. LEE and Y.-M. CHIANG, Materials. Science. Forum 207-209 (1996) 129.

    Google Scholar 

  15. C. HERRING, Jr. Appl. Phys. 21 (1950) 437.

    Google Scholar 

  16. R. L. COBLE, ibid. 34 (1963) 1679.

    Google Scholar 

  17. D. BIKA, J. A. PFAENDTNER, M. MENYHARD and C. J. MCMAHON JR, Acta. Metall. Mater. 43 (1995) 1895.

    Google Scholar 

  18. D. BIKA and C. J. McMAHON JR, ibid. 43 (1995) 1909.

    Google Scholar 

  19. XU TINGDONG, J. Mater. Sci. 22 (1987) 337.

    Google Scholar 

  20. Idem., J. Mater. Sci. Lett. 7 (1988) 241.

    Google Scholar 

  21. XU TINGDONG and SONG SHENHUA, Acta Metall. 37 (1989) 2499.

    Google Scholar 

  22. R. G. FAULKNER, J. Mater. Sci. 16 (1981) 373.

    Google Scholar 

  23. G. SEIBEL, Mem. Sci. Rev. Met. 60 (1964) 413.

    Google Scholar 

  24. R. D. K. MISRA and T. V. BALASUBRAMANIAN, Acta Metall. 37 (1989) 1475.

    Google Scholar 

  25. P. BOWEN and C. A. HIPPSLEY, Acta Metall. 36(2) (1988) 425.

    Google Scholar 

  26. I-WEI CHEN, ibid. 34(7) (1986) 1335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tingdong, X. A model for intergranular segregation/dilution induced by applied stress. Journal of Materials Science 35, 5621–5628 (2000). https://doi.org/10.1023/A:1004877601914

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004877601914

Keywords

Navigation