Abstract
The sequence of precipitation in solutionized (SOL) 2124 aluminum and direct-quenched from the die (DQD) 339 aluminum has been identified by a combination of differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Both alloys form S' (Al2CuMg) as the first precipitate after GP zone dissolution. In each alloy a second phase forms at higher temperatures—Si for DQD 339 Al, θ′ (CuAl2) for SOL 2124 Al. These results illustrate two difficulties associated with the interpretation of calorimetric observations. 1) The S′ phase precipitates at a much higher temperature in 2124 Al than in 339 Al. Calorimetric determinations of activation energies for GP zone dissolution and S' precipitation suggest that the former is the rate-determining step for the latter. Since this or similar effects can be expected to control precipitation rates in other alloys, a precipitate is not uniquely identified simply by the DSC peak temperature. Accordingly, the literature must be viewed with caution unless the precipitate assigned to a DSC peak is identified by TEM. 2) As Si forms in DQD 339 aluminum, 40% of the S' precipitate dissolves. In this circumstance, where two calorimetrically opposed processes occur simultaneously, activation energies determined by differential isothermal calorimetry are erroneous.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
K. Hirano and H. Iwasaki, Trans. Jap. Inst. Met. 5 (1964) 162.
J. M. Papazian, Metall. Trans. A12 (1981) 269.
M. Van Rooyan, J. A. Sinte Maartensdijk and E. J. Mittemeijer, ibid. A19 (1988) 2433.
C. Antonione, F. Marino and G. Riontiono, Mater. Chem. Phys. 20 (1988) 13.
S. Abis and G. Donzelli, J. Mater. Sci. Letters 7 (1988) 51.
J. M. Papazian, Metall. Trans. A19 (1988) 2945.
A. K. Jena, A. K. Gupta and M. C. Chaturvedi, Acta. Metall. 37 (1989) 885.
M. C. Chaturvedi, A. K. Gupta and A. K. Jena, Mater. Sci. Eng. A110 (1989) 187.
M. Van Rooyan and E. J. Mittemeijer, Metall. Trans. A20 (1989) 1207.
I. Dutta and D. L. Bourell, Mater. Sci. Eng. A112 (1989) 67.
C. Badini, F. Marino and A. Tomasi, Mater. Chem. Phys. 25 (1990) 57.
A.-M. Zahra and C. Y. Zahra, J. Thermal Anal. 36 (1990) 1465.
C. Badini, F. Marino and A. Tomasi, Mater. Sci. Eng. A136 (1991) 99.
F. Marino and A. Tomasi Idem., J. Mater. Sci. 26 (1991) 6279.
P. Appendino, C. Badini, F. Marino and A. Tomasi, Mater. Sci. Eng. A135 (1991) 275.
M. J. Starink and P. Van Mourink, Metall. Trans A20 (1991) 665.
M. J. Starink, V. Jooris and P. Van Mourink, in “Metal Matrix Composites-Processing, Microstructure and Properties,” edited by N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, T. Lorentzen, A. Schrøder Pedersen, O. B. Pedersen and B. Ralph, (Risø National Lab, Roskilde, Denmark, 1991), p. 675.
H.-L. Lee, W.-H. Lu, S. L.-I. Chan, Scripta Metall. Mater. 25 (1991) 2165.
I. Dutta, S. M. Allen and J. L. Hafley, Metall. Trans. A22 (1991) 2553.
I. Dutta and S. M. Allen, J. Mater. Sci. Letters 10 (1991) 323.
M. J. Starink and P. Van Mourink, Mater. Sci. Eng. A156 (1992) 183.
T. S. Kim, T. H. Kim, K. H. Oh and H. I. Lee, J. Mater. Sci. 27 (1992) 2599.
I. Dutta, C. P. Harper and G. Dutta, Metall. Mater. Trans. A25 (1994) 1591.
C. Garcia-Cordovilla, E. Louis, J. Narciso and A. Pamies, Mater. Sci. Eng. A189 (1994) 219.
M. P. Thomas and J. E. King, J. Mater. Sci. 29 (1994) 5272.
P. Ratchev, B. Verlinden and P. Vanhoute, Scripta Metall. Mater. 30 (1994) 599.
C. Badini, F. Marino and E. Verne, Mater. Sci. Eng. A191 (1995) 185.
I. N. A. Oguocha and S. Yannacopoulos, ibid. A231 (1997) 25.
L. Zhen, W. D. Fei, S. B. Kang and H. W. Kim, J. Mater. Sci. 32 (1997) 1895.
M. J. Starink and A.-M. Zahra, Phil. Mag. 76 (1997) 701.
G. W. Smith, Thermochimica Acta 313 (1998) 27.
Idem., ibid. 317 (1998) 7.
H. E. Kissinger, Anal. Chem. 29 (1957) 1702.
T. Ozawa, J. Thermal Anal. 2 (1970) 301; 3 (1973) 501; 7 (1975) 601; Bull. Chem. Soc. Japan 57 (1984) 639.
R. L. Thakur, in “Advances in Nucleation and Crystallization of Glasses,” edited by L. L. Hench and S.W. Freiman (Amer. Ceram. Soc., Columbus, OH, 1972), p. 166 (cited in reference [36]).
J. A. Augis and J. E. Bennett, J. Therm. Anal. 13 (1978) 283.
E. J. Mittemeijer, L. Cheng, P. J. Van Der Schaaf, C. M. Brakman and B. M. Korevaar, Metall. Trans. A19 (1988) 925.
H. Yinnon and D. R. Uhlmann, J. Non-Crystalline Solids 54 (1983) 253.
J. Sestak, in “Comprehensive Analytical Chemistry, Vol. XII, Part D,” edited by G. Svehla (Elsevier, Amsterdam, 1984) Ch. 9, p. 212.
R. K. Mishra, G. W. Smith, W. J. Baxter, A. K. Sachdev and V. Franetovic, submitted for publication.
A. K. Gupta, P. Gaunt and M. C. Chaturvedi, Phil. Mag. 55 (1987) 375.
T. S. Lundy and J. F. Murdock, J. Appl. Phys. 33 (1962) 1671.
P. M. Beyeler and Y. Adda, Le Journal de Physique 29 (1968) 345.
J. Bar, H.-J. Gudladt, J. Illy and J. Lendvai, Mat. Sci. Eng. A248 (1998) 181.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Smith, G.W., Baxter, W.J. & Mishra, R.K. Precipitation in 339 and 2124 aluminum: A caveat for calorimetry. Journal of Materials Science 35, 3871–3880 (2000). https://doi.org/10.1023/A:1004837615783
Issue Date:
DOI: https://doi.org/10.1023/A:1004837615783