Skip to main content

Advertisement

Log in

Precipitation in 339 and 2124 aluminum: A caveat for calorimetry

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The sequence of precipitation in solutionized (SOL) 2124 aluminum and direct-quenched from the die (DQD) 339 aluminum has been identified by a combination of differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Both alloys form S' (Al2CuMg) as the first precipitate after GP zone dissolution. In each alloy a second phase forms at higher temperatures—Si for DQD 339 Al, θ′ (CuAl2) for SOL 2124 Al. These results illustrate two difficulties associated with the interpretation of calorimetric observations. 1) The S′ phase precipitates at a much higher temperature in 2124 Al than in 339 Al. Calorimetric determinations of activation energies for GP zone dissolution and S' precipitation suggest that the former is the rate-determining step for the latter. Since this or similar effects can be expected to control precipitation rates in other alloys, a precipitate is not uniquely identified simply by the DSC peak temperature. Accordingly, the literature must be viewed with caution unless the precipitate assigned to a DSC peak is identified by TEM. 2) As Si forms in DQD 339 aluminum, 40% of the S' precipitate dissolves. In this circumstance, where two calorimetrically opposed processes occur simultaneously, activation energies determined by differential isothermal calorimetry are erroneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. K. Hirano and H. Iwasaki, Trans. Jap. Inst. Met. 5 (1964) 162.

    Google Scholar 

  2. J. M. Papazian, Metall. Trans. A12 (1981) 269.

    Google Scholar 

  3. M. Van Rooyan, J. A. Sinte Maartensdijk and E. J. Mittemeijer, ibid. A19 (1988) 2433.

    Google Scholar 

  4. C. Antonione, F. Marino and G. Riontiono, Mater. Chem. Phys. 20 (1988) 13.

    Google Scholar 

  5. S. Abis and G. Donzelli, J. Mater. Sci. Letters 7 (1988) 51.

    Google Scholar 

  6. J. M. Papazian, Metall. Trans. A19 (1988) 2945.

    Google Scholar 

  7. A. K. Jena, A. K. Gupta and M. C. Chaturvedi, Acta. Metall. 37 (1989) 885.

    Google Scholar 

  8. M. C. Chaturvedi, A. K. Gupta and A. K. Jena, Mater. Sci. Eng. A110 (1989) 187.

    Google Scholar 

  9. M. Van Rooyan and E. J. Mittemeijer, Metall. Trans. A20 (1989) 1207.

    Google Scholar 

  10. I. Dutta and D. L. Bourell, Mater. Sci. Eng. A112 (1989) 67.

    Google Scholar 

  11. C. Badini, F. Marino and A. Tomasi, Mater. Chem. Phys. 25 (1990) 57.

    Google Scholar 

  12. A.-M. Zahra and C. Y. Zahra, J. Thermal Anal. 36 (1990) 1465.

    Google Scholar 

  13. C. Badini, F. Marino and A. Tomasi, Mater. Sci. Eng. A136 (1991) 99.

    Google Scholar 

  14. F. Marino and A. Tomasi Idem., J. Mater. Sci. 26 (1991) 6279.

    Google Scholar 

  15. P. Appendino, C. Badini, F. Marino and A. Tomasi, Mater. Sci. Eng. A135 (1991) 275.

    Google Scholar 

  16. M. J. Starink and P. Van Mourink, Metall. Trans A20 (1991) 665.

    Google Scholar 

  17. M. J. Starink, V. Jooris and P. Van Mourink, in “Metal Matrix Composites-Processing, Microstructure and Properties,” edited by N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, T. Lorentzen, A. Schrøder Pedersen, O. B. Pedersen and B. Ralph, (Risø National Lab, Roskilde, Denmark, 1991), p. 675.

    Google Scholar 

  18. H.-L. Lee, W.-H. Lu, S. L.-I. Chan, Scripta Metall. Mater. 25 (1991) 2165.

    Google Scholar 

  19. I. Dutta, S. M. Allen and J. L. Hafley, Metall. Trans. A22 (1991) 2553.

    Google Scholar 

  20. I. Dutta and S. M. Allen, J. Mater. Sci. Letters 10 (1991) 323.

    Google Scholar 

  21. M. J. Starink and P. Van Mourink, Mater. Sci. Eng. A156 (1992) 183.

    Google Scholar 

  22. T. S. Kim, T. H. Kim, K. H. Oh and H. I. Lee, J. Mater. Sci. 27 (1992) 2599.

    Google Scholar 

  23. I. Dutta, C. P. Harper and G. Dutta, Metall. Mater. Trans. A25 (1994) 1591.

    Google Scholar 

  24. C. Garcia-Cordovilla, E. Louis, J. Narciso and A. Pamies, Mater. Sci. Eng. A189 (1994) 219.

    Google Scholar 

  25. M. P. Thomas and J. E. King, J. Mater. Sci. 29 (1994) 5272.

    Google Scholar 

  26. P. Ratchev, B. Verlinden and P. Vanhoute, Scripta Metall. Mater. 30 (1994) 599.

    Google Scholar 

  27. C. Badini, F. Marino and E. Verne, Mater. Sci. Eng. A191 (1995) 185.

    Google Scholar 

  28. I. N. A. Oguocha and S. Yannacopoulos, ibid. A231 (1997) 25.

    Google Scholar 

  29. L. Zhen, W. D. Fei, S. B. Kang and H. W. Kim, J. Mater. Sci. 32 (1997) 1895.

    Google Scholar 

  30. M. J. Starink and A.-M. Zahra, Phil. Mag. 76 (1997) 701.

    Google Scholar 

  31. G. W. Smith, Thermochimica Acta 313 (1998) 27.

    Google Scholar 

  32. Idem., ibid. 317 (1998) 7.

    Google Scholar 

  33. H. E. Kissinger, Anal. Chem. 29 (1957) 1702.

    Google Scholar 

  34. T. Ozawa, J. Thermal Anal. 2 (1970) 301; 3 (1973) 501; 7 (1975) 601; Bull. Chem. Soc. Japan 57 (1984) 639.

    Google Scholar 

  35. R. L. Thakur, in “Advances in Nucleation and Crystallization of Glasses,” edited by L. L. Hench and S.W. Freiman (Amer. Ceram. Soc., Columbus, OH, 1972), p. 166 (cited in reference [36]).

    Google Scholar 

  36. J. A. Augis and J. E. Bennett, J. Therm. Anal. 13 (1978) 283.

    Google Scholar 

  37. E. J. Mittemeijer, L. Cheng, P. J. Van Der Schaaf, C. M. Brakman and B. M. Korevaar, Metall. Trans. A19 (1988) 925.

    Google Scholar 

  38. H. Yinnon and D. R. Uhlmann, J. Non-Crystalline Solids 54 (1983) 253.

    Google Scholar 

  39. J. Sestak, in “Comprehensive Analytical Chemistry, Vol. XII, Part D,” edited by G. Svehla (Elsevier, Amsterdam, 1984) Ch. 9, p. 212.

    Google Scholar 

  40. R. K. Mishra, G. W. Smith, W. J. Baxter, A. K. Sachdev and V. Franetovic, submitted for publication.

  41. A. K. Gupta, P. Gaunt and M. C. Chaturvedi, Phil. Mag. 55 (1987) 375.

    Google Scholar 

  42. T. S. Lundy and J. F. Murdock, J. Appl. Phys. 33 (1962) 1671.

    Google Scholar 

  43. P. M. Beyeler and Y. Adda, Le Journal de Physique 29 (1968) 345.

    Google Scholar 

  44. J. Bar, H.-J. Gudladt, J. Illy and J. Lendvai, Mat. Sci. Eng. A248 (1998) 181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, G.W., Baxter, W.J. & Mishra, R.K. Precipitation in 339 and 2124 aluminum: A caveat for calorimetry. Journal of Materials Science 35, 3871–3880 (2000). https://doi.org/10.1023/A:1004837615783

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004837615783

Keywords